• Cytotoxicity of in vitro exposure of polystyrene latex bead nanoparticles to human keratinocyte (HaCaT) cells and human cervical cancer (HeLa)cells

      Phillip, Roy; Zahid, Myra; Shang, Lijun (2016)
      Nanoparticles are increasingly used in industry and medicine due to their unique physiochemical properties such as their small size, charge, shape, chemical architecture, large surface area, surface reactivity and media interactions, etc [1-5]. However, very little is still known on the interactions between nanoparticles and the biological system. This study aims to evaluate the cytotoxicity of polystyrene latex bead nanoparticles on HaCat and HeLa cell lines. Carboxyl-modified 20 nm polystyrene NPs core labelled with fluorophore were from Invitogen. We chose to use polystyrene NPs because this specific type of NP is being increasingly characterized for use in nanosensors and drug nanocarrier investigations. 1x 104 cells/100 μl of cell culture medium were plated into 96-well plates in triplicate, measuring activity post 24 hours at concentrations of 10, 50, 100 μg/ml of polystyrene NPs exposure. The extracellular lactate dehydrogenase release was measured by using a colorimetric CytoTox 96 nonradioactive assay kit from Promega and the absorbance were recorded at 450nm (FLUO-star) with Elisa micro plate reader. The MTT assay was used to evaluate mitochondrial activity. This was performed by inserting a premixed optimized dye solution in the culture wells. The Absorbance was recorded at 570 nm, from the recorded absorbance is directly proportional to the number of live cells. The cell lines were kept in a plastic T-75cm2 tissue culture flasks grown in DMEM. We found that cytotoxicity of polystyrene NPs on both cells was concentration dependent. For Hela cells, with exporesure of polystyrene NPs at concentrations of 10, 50, 100 μg/ml for 24 hrs, the percentage cytotoxicity of positive control for LDH assay was 35.9%, 49.5% and 73.4% respectively. With the MTT cell viability assay the percentage MTT reduction of negative control was 88.9%, 42.9% and 26.4% respectively. Cell toxicity increased with increasing polystyrene NPs concentration. For HaCaT cells, the cytotoxic effect is less significant than those on Hela cells. With MTT assay, when compared to HaCaT cells exposed to a negative control containing only PBS, the cell viability decreased as the concentrations of NPs increased. Cells exposed to 100μg/ml of polystyrene NPs for a period of 24 hours compared to those exposed to a positive control (100% cell viability) had an average cell viability of 49%, with those numbers decreasing from 59% for cells exposed to 10μg/ml of polystyrene NPs to 57% for cells exposed to 50μg/ml of polystyrene NPs. Our results indicated that polystyrene NPs acted differently in two different cell types and that cautions should be taken about its cytotoxicity. Further understanding of the mechanism involving the ROS generation could provide more information on how polystyrene NPs increase cytotoxicity.
    • Ibuprofen Nanoparticles and its cytotoxicity on A549 and HaCaT cell lines

      Graham, Stan; Phillip, Roy; Zahid, Myra; Bano, Nadia; Iqbal, Qasim; Mahboob, Fidaa; Chen, Xianfeng; Shang, Lijun (2016)
      Ibuprofen (IBF) is an outstanding non-steroidal drug for analgesic and anti-inflammatory therapies but it exhibits poor solubility in water [1, 2]. Increased dosage administration has been linked to gastrointestinal and cardiovascular complications [3]. Many techniques have been employed to improve the solubility of NSAIDs [4]. In this study, the anti-solvent precipitation method was used to make Ibuprofen nanoparticles (IBF NPs). Optimised preparation parameters such as solvent (ethanol), raw drug concentration (400 mg), solvent/anti-solvent ratio (1:50) and surfactant concentration (0.25 mg/ml) have been studied to yield nanoparticles with a mean size of 58.8 nm, which is confirmed by dynamic light scattering and transmission electron microscopy. These IBF NPs posess increased aqueous solubility compared to the micro counterpart and maintain with chemical integrity indicated by high performance liquid chromatography and Fourier transform infrared spectroscopy. In addition, in vitro cytotoxicity of IBF NPs has been studied on A549 and HaCat cell lines using MTT and LDH assays. Both cells were obtained from ATCC. The A549 cells were grown in a modification of Ham’s F-12, containing L-glutamine, called F-12K. The HaCaT cells were grown in DMEM containing sodium pyruvate (110 mg/l). Normal cell culture and sub-culture were applied and the cells were used after around 45 passages [5]. The cell culture media containing 105cells/ml were placed in a 96-well plate with addition of IBF NPs and Micro form at concentrations in the range of between 6 and 500 ug/ml by diluting them with DMEM and F-12K for use with the HaCaT and A549 cells respectively. After 24, 48 and 72h exposure, the MTT and LDH cytotoxicity assay were performed in triplicates and on three separate experiment cultures and the absorbance was recorded at 570 nm and 492nm respectively with Elisa micro plate reader. The cell viability (%) related to control (cells in culture medium without NPs) was calculated. A very good cytotoxicity profile was observed, indicating an in vitro cytocompatibility of the IBF NPs in these cell culture systems and no significant changes in cytotoxicity compared with Micro IBF. We conclude that our IBF NPs have increased solubility, same chemical integrity and unchanged cytotoxicity compared to IBF Micro drug. Further work will concentrate on optimising more rigorous parameter to produce excellent quality NPs. More detailed characterisation of IBF NPs is to be tested, such as using PXRD and SEM to further corroborate particle shape and size. The range of no toxic in vitro concentrations is also to be further confirmed. Eventually scaled up preparation of IBF NPs will be developed without relinquishing NPs quality. This would improve the potential for in vitro/ in vivo applications and clinical use of IBF NPs and NSAIDs in general.