• 3D Printing of a Multi-Layered Polypill Containing Six Drugs Using a Novel Stereolithographic Method

      Robles-Martinez, P.; Xu, X.; Trenfield, S.J.; Awad, A.; Goyanes, A.; Telford, Richard; Basit, A.W.; Gaisford, S. (2019-06)
      Three-dimensional printing (3DP) has demonstrated great potential for multi-material fabrication because of its capability for printing bespoke and spatially separated material conformations. Such a concept could revolutionise the pharmaceutical industry, enabling the production of personalised, multi-layered drug products on demand. Here, we developed a novel stereolithographic (SLA) 3D printing method that, for the first time, can be used to fabricate multi-layer constructs (polypills) with variable drug content and/or shape. Using this technique, six drugs, including paracetamol, cffeine, naproxen, chloramphenicol, prednisolone and aspirin, were printed with dfferent geometries and material compositions. Drug distribution was visualised using Raman microscopy, which showed that whilst separate layers were successfully printed, several of the drugs diffused across the layers depending on their amorphous or crystalline phase. The printed constructs demonstrated excellent physical properties and the different material inclusions enabled distinct drug release profiles of the six actives within dissolution tests. For the first time, this paper demonstrates the feasibility of SLA printing as an innovative platform for multi-drug therapy production, facilitating a new era of personalised polypills.
    • Multianalyte determination of the kinetic rate constants of drug-cyclodextrin supermolecules by high performance affinity chromatography

      Wang, C.; Ge, J.; Zhang, J.; Guo, T.; Chi, L.; He, Z.; Xu, X.; York, Peter; Sun, L.; Li, H. (2014-09-12)
      The kinetics of the dissociation is fundamental to the formation and the in vivo performance of cyclodextrin supramolecules. The individual determination of the apparent dissociation rate constant (kd,app) using high performance affinity chromatography (HPAC) is a tedious process requiring numerous separate studies and massive data fitting. In this study, the multianalyte approach was employed to simultaneously measure the kd,app values of three drugs through one injection based on the investigation of the dependence of drug-cyclodextrin interaction kinetics on the mobile phase composition. As a result, the kd,app values increased when decreasing the ion strength, increasing the ionization of drugs and adding extra organic solvents. The values of kd,app for acetaminophen, phenacetin and S-flurbiprofen estimated by the multianalyte approach were 8.54+/-1.81, 5.36+/-0.94 and 0.17+/-0.02s(-1), respectively, which were in good agreement with those determined separately (8.31+/-0.58, 5.01+/-0.42 and 0.15+/-0.01s(-1)). For both of the single and multiple flow rate peak profiling methods, the results of the multianalyte approach were statistically equivalent with that of the single compound analysis for all of the three drugs (p>0.05). The multianalyte approach can be employed for the efficient evaluation of the drug-cyclodextrin kinetics with less variance caused by cyclodextrin column bleeding.