• Modulation of 5-HT4 receptor function in the rat isolated ileum by fluoxetine: the involvement of endogenous 5-hydroxytryptamine.

      Tuladhar, Bishwa R.; Costall, Brenda; Naylor, Robert J. (2009-07-13)
      The effect of the selective serotonin reuptake inhibitor fluoxetine was examined on the 5-HT4 receptor-mediated relaxation in the rat isolated ileum. Fluoxetine unsurmountably antagonized the relaxation to exogenous 5-HT with abolition of the response at 10 ¿M. Fluoxetine (10 ¿M) also caused a gradual loss of the resting tension. These effects of fluoxetine were prevented by a prior addition of the 5-HT4 receptor selective antagonist GR113808 (100 nM), which itself caused a contraction of the tissues when administered alone. Fluoxetine (10 ¿M) also failed to prevent the relaxation due to exogenous 5-HT and the 5-HT4 receptor agonist 5-methoxytryptamine in tissues taken from the rats treated with para-chlorophenylalanine (300 mg kg¿1) for 3 and 6 days, which reduced the 5-HT level in the mucosa by 88 and 97.5% respectively. The contraction of the tissues with GR113808 indicates the presence of an endogenous 5-HT tone at the 5-HT4 receptor in the rat ileum. It is hypothesized that in the presence of fluoxetine, the concentration of endogenous 5-HT at the receptor was increased sufficiently to reduce or abolish the relaxation to 5-HT added exogenously. The inability of fluoxetine to prevent the relaxation to 5-HT in the presence of GR113808 or after the p-CPA treatment supports this hypothesis. The effect of the selective serotonin reuptake inhibitor fluoxetine was examined on the 5-HT4 receptor-mediated relaxation in the rat isolated ileum. Fluoxetine unsurmountably antagonized the relaxation to exogenous 5-HT with abolition of the response at 10 ¿M. Fluoxetine (10 ¿M) also caused a gradual loss of the resting tension. These effects of fluoxetine were prevented by a prior addition of the 5-HT4 receptor selective antagonist GR113808 (100 nM), which itself caused a contraction of the tissues when administered alone. Fluoxetine (10 ¿M) also failed to prevent the relaxation due to exogenous 5-HT and the 5-HT4 receptor agonist 5-methoxytryptamine in tissues taken from the rats treated with para-chlorophenylalanine (300 mg kg¿1) for 3 and 6 days, which reduced the 5-HT level in the mucosa by 88 and 97.5% respectively. The contraction of the tissues with GR113808 indicates the presence of an endogenous 5-HT tone at the 5-HT4 receptor in the rat ileum. It is hypothesized that in the presence of fluoxetine, the concentration of endogenous 5-HT at the receptor was increased sufficiently to reduce or abolish the relaxation to 5-HT added exogenously. The inability of fluoxetine to prevent the relaxation to 5-HT in the presence of GR113808 or after the p-CPA treatment supports this hypothesis. The effect of the selective serotonin reuptake inhibitor fluoxetine was examined on the 5-HT4 receptor-mediated relaxation in the rat isolated ileum. Fluoxetine unsurmountably antagonized the relaxation to exogenous 5-HT with abolition of the response at 10 ¿M. Fluoxetine (10 ¿M) also caused a gradual loss of the resting tension. These effects of fluoxetine were prevented by a prior addition of the 5-HT4 receptor selective antagonist GR113808 (100 nM), which itself caused a contraction of the tissues when administered alone. Fluoxetine (10 ¿M) also failed to prevent the relaxation due to exogenous 5-HT and the 5-HT4 receptor agonist 5-methoxytryptamine in tissues taken from the rats treated with para-chlorophenylalanine (300 mg kg¿1) for 3 and 6 days, which reduced the 5-HT level in the mucosa by 88 and 97.5% respectively. The contraction of the tissues with GR113808 indicates the presence of an endogenous 5-HT tone at the 5-HT4 receptor in the rat ileum. It is hypothesized that in the presence of fluoxetine, the concentration of endogenous 5-HT at the receptor was increased sufficiently to reduce or abolish the relaxation to 5-HT added exogenously. The inability of fluoxetine to prevent the relaxation to 5-HT in the presence of GR113808 or after the p-CPA treatment supports this hypothesis.
    • Neuromedin U can exert colon-specific, enteric nerve-mediated prokinetic activity, via a pathway involving NMU1 receptor activation.

      Dass, N.B.; Bassil, A.K.; North-Laidler, V.J.; Morrow, R.; Aziz, E.; Tuladhar, Bishwa R.; Sanger, G.J. (2007)
      The neuromedin U (NMU) receptors, NMU1 and NMU2, are expressed in the gut but their functions are unclear. This study explores the role of NMU in gastrointestinal motility. Experimental approach: The effects of NMU were examined in the forestomach and colon isolated from NMU2R wild-type and NMU2R-/- (knockout) mice, looking for changes in muscle tension and in nerve-mediated responses evoked by electrical field stimulation (EFS), and in models of peristalsis in mouse colon and faecal pellet transit in guinea-pig colon. Key results: In the mouse forestomach, NMU (1 nM-10 ¿M) concentration-dependently induced muscle contraction, in the presence of tetrodotoxin and atropine, in preparations from both wild-type and NMU2R-/- mice (pEC50: 7.9, 7.6, Emax: 0.26, 0.20g tension, respectively, n=8 each concentration). The same concentrations of NMU had no consistent effects on the responses to EFS (n=8). In the mouse colon, NMU (0.1 nM-1 ¿M) had no significant effect on baseline muscle tension (n=8), but concentration-dependently potentiated EFS-evoked contractions in preparations from both wild-type and NMU2R-/- mice, pEC50: 8.1, 7.8, Emax: 24%, 21%, respectively, n=6-11. NMU (0.01 nM-0.1 ¿M, n=5-7) concentration-dependently decreased the interval between waves of peristalsis in the mouse colon (pEC50: 8.8) and increased the rate at which a faecal pellet moved along the guinea-pig colon. Conclusions and implications: These results demonstrate that NMU exerts colon-specific, nerve-mediated, prokinetic activity, via a pathway involving activation of NMU1 receptors. This suggests that this receptor may represent a molecular target for the treatment of intestinal motility disorders.
    • Pharmacological characterization of endothelin receptors-mediated contraction in the mouse isolated proximal and distal colon.

      Khan, Humaira; Naylor, Robert J.; Tuladhar, Bishwa R. (2006)
      The study investigated the role of endothelin (ET) and the ET receptor subtypes ETA and ETB in mediating longitudinal contraction in the mouse proximal and distal colon. Cumulative concentration¿response curves to a range of ET agonists (ET-1, ET-2, ET-3, (Ala1,3,11,13) ET and IRL 1620) were established by administering concentrations ranging from 0.01nM to 0.3¿M. Concentration¿response curves to ET-1, which exhibits a high affinity for both ETA and ETB receptor subtypes, were also established in the presence of the ETA antagonist BMS 182874 and the ETB antagonist IRL1038. The addition of the selective ETA receptor antagonist BMS 182874 caused a rightward shift of the concentration¿response curve to ET-1 in both sections of the colon. The ETB receptor antagonist IRL1038 (0.3¿1¿M) did not significantly effect the response to ET-1 in the proximal colon but caused a significant decrease in response towards higher concentrations ranges (3nM) in the distal colon. A comparison of the concentration¿response curves to ET-1, ET-2 and ET-3 showed a rank order of potency ET-1ET-2ET-3 in the proximal colon and ET-1ET-2ET-3 in the distal colon. The selective ETB receptor agonists, (Ala1,3,11,13) ET and IRL 1620 did not produce any response in the proximal sections of the colon but produced a smaller contraction in the distal segments. The data indicate that ET can contract the proximal tissues of the mouse colon predominantly via ETA receptors and in the distal tissues via ETA and ETB receptors.