• Luminal Bioavailability of Orally Administered ω-3 PUFAs in the Distal Small Intestine, and Associated Changes to the Ileal Microbiome, in Humans with a Temporary Ileostomy

      Nana, G.; Mitra, S.; Watson, H.; Young, C.; Wood, H.M.; Perry, S.L.; Race, Amanda D.; Quirke, P.; Toogood, G.J.; Loadman, Paul M.; et al. (2021-05)
      Background: Oral administration of purified omega-3 (ω-3) PUFAs is associated with changes to the fecal microbiome. However, it is not known whether this effect is associated with increased PUFA concentrations in the gut. Objectives: We investigated the luminal bioavailability of oral ω-3 PUFAs (daily dose 1 g EPA and 1g DHA free fatty acid equivalents as triglycerides in soft-gel capsules, twice daily) and changes to the gut microbiome, in the ileum. Methods: Ileostomy fluid (IF) and blood were obtained at baseline, after first capsule dosing (median 2 h), and at a similar time after final dosing on day 28, in 11 individuals (median age 63 y) with a temporary ileostomy. Fatty acids were measured by LC–tandem MS. The ileal microbiome was characterized by 16S rRNA PCR and Illumina sequencing. Results: There was a mean 6.0 ± 9.8-fold and 6.6 ± 9.6-fold increase in ileal EPA and DHA concentrations (primary outcome), respectively, at 28 d, which was associated with increased RBC ω-3 PUFA content (P ≤ 0.05). The first oral dose did not increase the ileal ω-3 PUFA concentration except in 4 individuals, who displayed high luminal EPA and DHA concentrations, which reduced to concentrations similar to the overall study population at day 28, suggesting physiological adaptation. Bacteroides, Clostridium, and Streptococcus were abundant bacterial genera in the ileum. Ileal microbiome variability over time and between individuals was large, with no consistent change associated with acute ω-3 PUFA dosing. However, high concentrations of EPA and DHA in IF on day 28 were associated with higher abundance of Bacteroides (r2 > 0.86, P < 0.05) and reduced abundance of other genera, including Actinomyces (r2 > 0.94, P < 0.05). Conclusions: Oral administration of ω-3 PUFAs leads to increased luminal ω-3 PUFA concentrations and changes to the microbiome, in the ileum of individuals with a temporary ileostomy.
    • A randomised trial of the effect of omega-3 polyunsaturated fatty acid supplements on the human intestinal microbiota

      Watson, H.; Mitra, S.; Croden, F.C.; Taylor, M.; Wood, H.M.; Perry, S.L.; Spencer, Jade A.; Quirke, P.; Toogood, G.J.; Lawton, C.L.; et al. (2017)
      Abstract Objective Omega-3 polyunsaturated fatty acids (PUFAs) have anticolorectal cancer (CRC) activity. The intestinal microbiota has been implicated in colorectal carcinogenesis. Dietary omega-3 PUFAs alter the mouse intestinal microbiome compatible with antineoplastic activity. Therefore, we investigated the effect of omega-3 PUFA supplements on the faecal microbiome in middle-aged, healthy volunteers (n=22). Design A randomised, open-label, cross-over trial of 8 weeks’ treatment with 4 g mixed eicosapentaenoic acid/docosahexaenoic acid in two formulations (soft-gel capsules and Smartfish drinks), separated by a 12-week ‘washout’ period. Faecal samples were collected at five time-points for microbiome analysis by 16S ribosomal RNA PCR and Illumina MiSeq sequencing. Red blood cell (RBC) fatty acid analysis was performed by liquid chromatography tandem mass spectrometry. Results Both omega-3 PUFA formulations induced similar changes in RBC fatty acid content, except that drinks were associated with a larger, and more prolonged, decrease in omega-6 PUFA arachidonic acid than the capsule intervention (p=0.02). There were no significant changes in α or β diversity, or phyla composition, associated with omega-3 PUFA supplementation. However, a reversible increased abundance of several genera, including Bifidobacterium, Roseburia and Lactobacillus was observed with one or both omega-3 PUFA interventions. Microbiome changes did not correlate with RBC omega-3 PUFA incorporation or development of omega-3 PUFA-induced diarrhoea. There were no treatment order effects. Conclusion Omega-3 PUFA supplementation induces a reversible increase in several short-chain fatty acid-producing bacteria, independently of the method of administration. There is no simple relationship between the intestinal microbiome and systemic omega-3 PUFA exposure.