• Archaeological, radiological, and biological evidence offer insight into Inca child sacrifice

      Wilson, Andrew S.; Brown, Emma L.; Villa, C.; Lynnerup, N.; Healey, Andrew R.; Ceruti, M.C.; Reinhard, J.; Previgliano, C.H.; Araoz, F.A.; Diez, J.G.; et al. (2013)
      Examination of three frozen bodies, a 13-y-old girl and a girl and boy aged 4 to 5 y, separately entombed near the Andean summit of Volcan Llullaillaco, Argentina, sheds new light on human sacrifice as a central part of the Imperial Inca capacocha rite, described by chroniclers writing after the Spanish conquest. The high-resolution diachronic data presented here, obtained directly from scalp hair, implies escalating coca and alcohol ingestion in the lead-up to death. These data, combined with archaeological and radiological evidence, deepen our understanding of the circumstances and context of final placement on the mountain top. We argue that the individuals were treated differently according to their age, status, and ritual role. Finally, we relate our findings to questions of consent, coercion, and/or compliance, and the controversial issues of ideological justification and strategies of social control and political legitimation pursued by the expansionist Inca state before European contact.
    • Evaluating osteological ageing from digital data

      Villa, C.; Buckberry, Jo; Lynnerup, N. (2019-08)
      Age at death estimation of human skeletal remains is one of the key issues in constructing a biological profile both in forensic and archaeological contexts. The traditional adult osteological methods evaluate macroscopically the morphological changes that occur with increasing age of specific skeletal indicators, such as the cranial sutures, the pubic bone, the auricular surface of the ilium and the sternal end of the ribs. Technologies such as CT and laser scanning are becoming more widely used in anthropology, and several new methods have been developed. This review focuses on how the osteological age-related changes have been evaluated in digital data. Firstly, the 3D virtual copies of the bones have been used to mimic the appearance of the dry bones and the application of the traditional methods. Secondly, the information directly extrapolated from CT scan has been used to qualitatively or quantitatively assess the changes of the trabecular bones, the thickness of the cortical bones, and to perform morphometric analyses. Lastly, the most innovative approach has been the mathematical quantification of the changes of the pelvic joints, calculating the complexity of the surface. The importance of new updated reference datasets, created thanks to the use of CT scanning in forensic settings, is also discussed.
    • Forensic age estimation based on the trabecular bone changes of the pelvic bone using post-mortem CT.

      Villa, C.; Hansen, M.N.; Buckberry, Jo; Cattaneo, C.; Lynnerup, N. (2013)
      We analyzed the trabecular bone changes in the pubic bone (PB) and in the auricular surface (AS) of the ilium using 319 CT scans of cadavers to estimate the age. Although the sharpness of the trabecular structure decreases in CT images when soft tissues are present, we identified four phases for the changes in PB and five in AS; a juvenile trait in PB and a senile trait in AS helped narrow the age range. High correlation with age was identified for both sexes in PB (F 0.89; M 0.75) and in AS (F 0.85; M 0.71) used independently or combined (F 0.91; M 0.78). The old adults (>60 years) could be evaluated with better accuracy and discriminated in several phases. We found low inter-observer error and low inaccuracy (about 6 years, mean for all age ranges). The method is robust with respect to slice thickness, display window and kernel within the tested ranges.
    • Gristhorpe man: an early bronze age log-coffin burial scientifically defined

      Melton, Nigel D.; Montgomery, Janet; Knüsel, Christopher J.; Batt, Catherine M.; Needham, S.; Parker Pearson, M.; Sheridan, A.; Heron, Carl P.; Horsley, T.; Schmidt, Armin R.; et al. (2010)
      A log-coffin excavated in the early nineteenth century proved to be well enough preserved in the early twenty-first century for the full armoury of modern scientific investigation to give its occupants and contents new identity, new origins and a new date. In many ways the interpretation is much the same as before: a local big man buried looking out to sea. Modern analytical techniques can create a person more real, more human and more securely anchored in history. This research team shows how.
    • A matter of months: High precision migration chronology of a Bronze Age female

      Frei, K.M.; Villa, C.; Jorkov, M.L.; Allentoft, M.E.; Kaul, F.; Ethelberg, P.; Reiter, S.S.; Wilson, Andrew S.; Taube, M.; Olsen, J.; et al. (2017-06-05)
      Establishing the age at which prehistoric individuals move away from their childhood residential location holds crucial information about the socio dynamics and mobility patterns in ancient societies. We present a novel combination of strontium isotope analyses performed on the over 3000 year old “Skrydstrup Woman” from Denmark, for whom we compiled a highly detailed month-scale model of her migration timeline. When combined with physical anthropological analyses this timeline can be related to the chronological age at which the residential location changed. We conducted a series of high-resolution strontium isotope analyses of hard and soft human tissues and combined these with anthropological investigations including CT-scanning and 3D visualizations. The Skrydstrup Woman lived during a pan-European period characterized by technical innovation and great social transformations stimulated by long-distance connections; consequently she represents an important part of both Danish and European prehistory. Our multidisciplinary study involves complementary biochemical, biomolecular and microscopy analyses of her scalp hair. Our results reveal that the Skrydstrup Woman was between 17–18 years old when she died, and that she moved from her place of origin -outside present day Denmark- to the Skrydstrup area in Denmark 47 to 42 months before she died. Hence, she was between 13 to 14 years old when she migrated to and resided in the area around Skrydstrup for the rest of her life. From an archaeological standpoint, this one-time and one-way movement of an elite female during the possible “age of marriageability” might suggest that she migrated with the aim of establishing an alliance between chiefdoms. Consequently, this detailed multidisciplinary investigation provides a novel tool to reconstruct high resolution chronology of individual mobility with the perspective of studying complex patterns of social and economic interaction in prehistory.
    • mtDNA from hair and nail clarifies the genetic relationship of the 15th century Qilakitsoq Inuit mummies

      Gilbert, M.T.P.; Djurhuus, D.; Melchior, L.; Lynnerup, N.; Worobey, M.; Wilson, Andrew S.; Andreasen, C.; Dissing, J. (2007-06)
      The 15th century Inuit mummies excavated at Qilakitsoq in Greenland in 1978 were exceptionally well preserved and represent the largest find of naturally mummified specimens from the Arctic. The estimated ages of the individuals, their distribution between two adjacent graves, the results of tissue typing, and incomplete STR results led researchers to conclude that the eight mummies formed two distinct family groups: A grandmother (I/5), two daughters (I/3, I/4), and their two children (I/1, I/2) in one grave, and two sisters (II/6, II/8) and a daughter (II/7) of one of them in the other. Using mtDNA from hair and nail, we have reanalyzed the mummies. The results allowed the unambiguous assignment of each of the mummies to one of three mtDNA haplogroups: A2b (I/5); A2a (I/2, I/3, II/6, II/8); A2a-311 (I/1, I/4, II/7), excluded some of the previous relations, and pointed to new ones. I/5 is not the grandmother/mother of the individuals in Grave I, and she is not maternally related to any of the seven other mummies; I/3 and I/4 are not sisters and II/7 is neither the daughter of II/6 nor of II/8. However, I/1 may be the child of either I/4 or II/7 and these two may be sisters. I/2 may be the son of I/3, who may be the daughter of either II/6 or II/8, and these two may be sisters. The observation of haplogroups A2a and A2b amongst the 550-year-old Inuit puts a lower limit on the age of the two lineages in Greenland.
    • Quantitative analysis of the morphological changes of the pubic symphyseal face and the auricular surface and implications for age at death estimation

      Villa, C.; Buckberry, Jo; Cattaneo, C.; Frohlich, B.; Lynnerup, N. (May 2015)
      Age estimation methods are often based on the age-related morphological changes of the auricular surface and the pubic bone. In this study, a mathematical approach to quantify these changes has been tested analyzing the curvature variation on 3D models from CT and laser scans. The sample consisted of the 24 Suchey–Brooks (SB) pubic bone casts, 19 auricular surfaces from the Buckberry and Chamberlain (BC) “recording kit” and 98 pelvic bones from the Terry Collection (Smithsonian Institution). Strong and moderate correlations between phases and curvature were found in SB casts (ρ 0.60–0.93) and BC “recording kit” (ρ 0.47–0.75), moderate and weak correlations in the Terry Collection bones (pubic bones: ρ 0.29–0.51, auricular surfaces: ρ 0.33–0.50) but associated with large individual variability and overlap of curvature values between adjacent decades. The new procedure, requiring no expert judgment from the operator, achieved similar correlations that can be found in the classic methods.
    • Surface curvature of pelvic joints from three laser scanners: separating anatomy from measurement error.

      Villa, C.; Gaudio, D.; Cattaneo, C.; Buckberry, Jo; Wilson, Andrew S.; Lynnerup, N. (2015-03)
      Recent studies have reported that quantifying symphyseal and auricular surfaces curvature changes on 3D models acquired by laser scanners have a potential for age estimation. However, no tests have been carried out to evaluate the repeatability of the results between different laser scanners. 3D models of the two pelvic joints were generated using three laser scanners (Custom, Faro, Minolta). The surface curvature, the surface area and the distance between co-registered meshes were investigated. Close results were found for surface areas (differences between 0.3% and 2.4%) and for distance deviations (average < 20 μm, SD < 200 μm). The curvature values were found to be systematically biased between different laser scanners, but still showing similar trends with increasing phases / scores. Applying a smoothing factor to the 3D models, it was possible to separate anatomy from the measurement error of each instrument, so that similar curvature values could be obtained (p < 0.05) independent of the specific laser scanner.
    • Technical note: reliability of Suchey-Brooks and Buckberry-Chamberlain methods on 3D visualizations from CT and laser scans.

      Villa, C.; Buckberry, Jo; Cattaneo, C.; Lynnerup, N. (2013)
      Previous studies have reported that the ageing method of Suchey-Brooks (pubic bone) and some of the features applied by Lovejoy et al. and Buckberry-Chamberlain (auricular surface) can be confidently performed on 3D visualizations from CT-scans. In this study, seven observers applied the Suchey-Brooks and the Buckberry-Chamberlain methods on 3D visualizations based on CT-scans and, for the first time, on 3D visualizations from laser scans. We examined how the bone features can be evaluated on 3D visualizations and whether the different modalities (direct observations of bones, 3D visualization from CT-scan and from laser scans) are alike to different observers. We found the best inter-observer agreement for the bones versus 3D visualizations, with the highest values for the auricular surface. Between the 3D modalities, less variability was obtained for the 3D laser visualizations. Fair inter-observer agreement was obtained in the evaluation of the pubic bone in all modalities. In 3D visualizations of the auricular surfaces, transverse organization and apical changes could be evaluated, although with high inter-observer variability; micro-, macroporosity and surface texture were very difficult to score. In conclusion, these methods were developed for dry bones, where they perform best. The Suchey-Brooks method can be applied on 3D visualizations from CT or laser, but with less accuracy than on dry bone. The Buckberry-Chamberlain method should be modified before application on 3D visualizations. Future investigation should focus on a different approach and different features: 3D laser scans could be analyzed with mathematical approaches and sub-surface features should be explored on CT-scans