• Complementary light scattering and synchrotron small-angle X-ray scattering studies of the micelle-to-unimer transition of polysulfobetaines

      Doncom, K.E.B.; Pitto-Barry, Anaïs; Willcock, H.; Lu, A.; McKenzie, B.E.; Kirby, N.; O'Reilly, R.K. (2015-03-19)
      AB and ABA di- and triblock copolymers where A is the hydrophilic poly(oligoethylene glycol methacrylate) (POEGMA) block and B is a thermo-responsive sulfobetaine block [2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide (PDMAPS) were synthesised by aqueous RAFT polymerisation with narrow dispersity (ĐM ≤ 1.22), as judged by aqueous SEC analysis. The di- and triblock copolymers self-assembled in salt-free water to form micelles with a PDMAPS core and the self-assembly of these polymers was explored by SLS and TEM analysis. The micelles were shown, by DLS analysis, to undergo a micelle-to-unimer transition at a critical temperature, which was dependent upon the length of the POEGMA block. Increasing the length of the third, POEGMA, block decreased the temperature at which the micelle-to-unimer transition occurred as a result of the increased hydrophilicity of the polymer. The dissociation of the micelles was further studied by SLS and synchrotron SAXS. SAXS analysis revealed that the micelle dissociation began at temperatures below that indicated by DLS analysis and that both micelles and unimers coexist. This highlights the importance of using multiple complementary techniques in the analysis of self-assembled structures. In addition the micelle-to-unimer morphology transition was employed to encapsulate and release a hydrophobic dye, Nile Red, as shown by fluorescence spectroscopy.
    • The Copolymer blending method : a new approach for targeted assembly of micellar nanoparticles

      Wright, D.B.; Patterson, J.P.; Pitto-Barry, Anaïs; Lu, A.; Kirby, N.; Gianneschi, N.C.; Chassenieux, C.; Colombani, O.; O'Reilly, R.K. (2015-09-22)
      Polymer self-assembly in solution is a simple strategy for the preparation of elegant yet complex nanomaterials. However, exhaustive synthesis of the copolymer synthons is often required to access specific assemblies. In this work we show that the blending of just two diblock copolymers with identical block lengths but varying hydrophobic monomer incorporations can be used to access a range of assemblies of intermediate hydrophobic composition. Indeed, the nanostructures produced from blending are identical to those formed with the directly synthesized copolymer of the same composition. This new approach presents researchers with a more efficient and accessible methodology to access precision self-assembled nanostructures, and we highlight its potential by applying it to a demonstrator catalytically active system.