• Control of Oxo-Group Functionalization and Reduction of the Uranyl Ion

      Arnold, P.L.; Pécharman, A-F.; Lord, Rianne M.; Jones, G.M.; Hollis, E.; Nichol, G.S.; Maron, L.; Fang, J.; Davin, T.; Love, J.B. (2015-04)
      Uranyl complexes of a large, compartmental N8-macrocycle adopt a rigid, “Pacman” geometry that stabilizes the UV oxidation state and promotes chemistry at a single uranyl oxo-group. We present here new and straightforward routes to singly reduced and oxo-silylated uranyl Pacman complexes and propose mechanisms that account for the product formation, and the byproduct distributions that are formed using alternative reagents. Uranyl(VI) Pacman complexes in which one oxo-group is functionalized by a single metal cation are activated toward single-electron reduction. As such, the addition of a second equivalent of a Lewis acidic metal complex such as MgN″2 (N″ = N(SiMe3)2) forms a uranyl(V) complex in which both oxo-groups are Mg functionalized as a result of Mg−N bond homolysis. In contrast, reactions with the less Lewis acidic complex [Zn(N″)Cl] favor the formation of weaker U−O−Zn dative interactions, leading to reductive silylation of the uranyl oxo-group in preference to metalation. Spectroscopic, crystallographic, and computational analysis of these reactions and of oxo-metalated products isolated by other routes have allowed us to propose mechanisms that account for pathways to metalation or silylation of the exo-oxogroup.
    • Multi-electron reduction of sulfur and carbon disulfide using binuclear uranium(III) borohydride complexes

      Arnold, P.L.; Stevens, C.J.; Bell, N.L.; Lord, Rianne M.; Goldberg, J.M.; Nichol, G.S.; Love, J.B. (2017-03-10)
      The first use of a dinuclear UIII/UIII complex in the activation of small molecules is reported. The octadentate Schiff-base pyrrole, anthracene-hinged ‘Pacman’ ligand LA combines two strongly reducing UIII centres and three borohydride ligands in [M(THF)4][{U(BH4)}2(m-BH4)(LA)(THF)2] 1-M, (M ¼ Li, Na, K). The two borohydride ligands bound to uranium outside the macrocyclic cleft are readily substituted by aryloxide ligands, resulting in a single, weakly-bound, encapsulated endo group 1 metal borohydride bridging the two UIII centres in [{U(OAr)}2(m-MBH4)(LA)(THF)2] 2-M (OAr ¼ OC6H2tBu3-2,4,6, M ¼ Na, K). X-ray crystallographic analysis shows that, for 2-K, in addition to the endo-BH4 ligand the potassium countercation is also incorporated into the cleft through h5-interactions with the pyrrolides instead of extraneous donor solvent. As such, 2-K has a significantly higher solubility in non-polar solvents and a wider U–U separation compared to the ‘ate’ complex 1. The cooperative reducing capability of the two UIII centres now enforced by the large and relatively flexible macrocycle is compared for the two complexes, recognising that the borohydrides can provide additional reducing capability, and that the aryloxide-capped 2-K is constrained to reactions within the cleft. The reaction between 1-Na and S8 affords an insoluble, presumably polymeric paramagnetic complex with bridging uranium sulfides, while that with CS2 results in oxidation of each UIII to the notably high UV oxidation state, forming the unusual trithiocarbonate (CS3)2 as a ligand in [{U(CS3)}2(m-k2:k2-CS3)(LA)] (4). The reaction between 2-K and S8 results in quantitative substitution of the endo-KBH4 by a bridging persulfido (S2)2 group and oxidation of each UIII to UIV, yielding [{U(OAr)}2(m-k2:k2-S2)(LA)] (5). The reaction of 2-K with CS2 affords a thermally unstable adduct which is tentatively assigned as containing a carbon disulfido (CS2)2 ligand bridging the two U centres (6a), but only the mono-bridged sulfido (S)2 complex [{U(OAr)}2(m-S (LA)] (6) is isolated. The persulfido complex (5) can also be synthesised from the mono-bridged sulfido complex (6) by the addition of another equivalent of sulfur.