• Fragmentation of N-linked glycans with a matrix-assisted laser desorption/ionization ion trap time-of-flight mass spectrometer.

      Harvey, D.J.; Martin, R.L.; Jackson, K.A.; Sutton, Chris W. (Wiley, 2004)
      N-Linked glycans were ionized from several matrices with a Shimadzu-Biotech AXIMA-QIT matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight mass spectrometer. [M+Na]+ ions were produced from all matrices and were accompanied by varying amounts of in-source fragmentation products. The least fragmentation was produced by 2,5-dihydroxybenzoic acid and the most by -cyano-4-hydroxycinnamic acid and 6-aza-2-thiothymine. Sialic acid loss was extensive but could be prevented by formation of methyl esters. Fragmentation produced typical low-energy-type spectra dominated by ions formed by glycosidic cleavages. MSn spectra (n = 3 and 4) were used to probe the pathways leading to the major diagnostic ions. Thus, for example, an ion that was formed by loss of the core GlcNAc residues and the 3-antenna was confirmed as being formed by a B/Y rather than a C/Z mechanism. The proposed structures of several cross-ring cleavage ions were confirmed and it was shown that MS3 spectra could be obtained from as little as 10 fmol of glycan
    • MALDI analysis of Bacilli in spore mixtures by applying a quadrupole trap-time-of-flight tandem mass spectrometer.

      Warscheid, B.; Jackson, K.A.; Sutton, Chris W.; Fenselau, C. (2003)
      A novel ion trap time-of-flight hybrid mass spectrometer (qIT-TOF MS) has been applied for peptide sequencing in proteolytic digests generated from spore mixtures of Bacilli. The method of on-probe solubilization and in situ proteolytic digestion of small, acid-soluble spore proteins has been recently developed in our laboratory, and microorganism identification in less than 20 min was accomplished.1 In this study, tryptic peptides were generated in situ from complex spore mixtures of B. subtilis 168, B. globigii, B. thuringiensis subs. Kurstaki, and B. cereus T, respectively. MALDI analysis of bacterial peptides generated was performed with an average mass resolving power of 6200 and a mass accuracy of up to 10 ppm using a trap-TOF tandem configuration. Precursor ions of interest were usually selected and stored in the quadrupole ion trap with their complete isotope distribution by choosing a window of ±2 Da. Sequence-specific information on isolated protonated peptides was gained via tandem MS experiments with an average mass resolving power of 4450 for product ion analysis, and protein and bacterial sources were identified by database searching.
    • Optimisation of intact cell MALDI method for fingerprinting of methicillin-resistant Staphylococcus aureus.

      Jackson, K.A.; Edwards-Jones, V.; Sutton, Chris W.; Fox, A.J. (2005)
      The use of matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry on intact cell microorganisms, Intact Cell MALDI (ICM), has been shown by numerous workers to yield effective species level identification. Early work highlighted the significant effect that variation in culture media, incubation conditions and length of incubation had on the spectra produced. Therefore, in order to achieve reliable and reproducible species level identification and sub-typing of microorganisms from ICM fingerprints, it has been essential to develop standardised methods. For methicillin-resistant Staphylococcus aureus (MRSA), a major nosocomial pathogen, we have developed such a standardised method. In this paper we present the experimental parameters, namely, the incubation period, the number of passages required from lyophilised or stored isolates, the method of deposition of the bacterial cells, the concentration of matrix solution, the drying time of bacterial cells prior to the addition of the matrix solution, the time between preparation of the bacterial/matrix sample and analysis and the MALDI pulsed extraction setting, which were considered during the development of defined methods.