• Cooperative mechanisms of fast-ion conduction in gallium-based oxides with tetrahedral moieties.

      Kendrick, E.; Kendrick, John; Knight, K.S,; Islam, M.S.; Slater, P.R. (2007)
      The need for greater energy efficiency has garnered increasing support for the use of fuel-cell technology, a prime example being the solid-oxide fuel cell1, 2. A crucial requirement for such devices is a good ionic (O2- or H+) conductor as the electrolyte3, 4. Traditionally, fluorite- and perovskite-type oxides have been targeted3, 4, 5, 6, although there is growing interest in alternative structure types for intermediate-temperature (400¿700 °C) solid-oxide fuel cells. In particular, structures containing tetrahedral moieties, such as La1-xCaxMO4-x/2(M=Ta,Nb,P) (refs 7,8), La1-xBa1+xGaO4-x/2 (refs 9,10) and La9.33+xSi6O26+3x/2 (ref. 11), have been attracting considerable attention recently. However, an atomic-scale understanding of the conduction mechanisms in these systems is still lacking; such mechanistic detail is important for developing strategies for optimizing the conductivity, as well as identifying next-generation materials. In this context, we report a combined experimental and computational modelling study of the La1-xBa1+xGaO4-x/2 system, which exhibits both proton and oxide-ion conduction9, 10. Here we show that oxide-ion conduction proceeds via a cooperative 'cog-wheel'-type process involving the breaking and re-forming of Ga2O7 units, whereas the rate-limiting step for proton conduction is intra-tetrahedron proton transfer. Both mechanisms are unusual for ceramic oxide materials, and similar cooperative processes may be important in related systems containing tetrahedral moieties.
    • Novel Aspects of the Conduction Mechanisms of Electrolytes Containing Tetrahedral Moieties

      Kendrick, E.; Kendrick, John; Orera, A.; Panchmatia, P.; Islam, M.S.; Slater, P.R. (2010-09)
      Traditionally materials with the fluorite and perovskite structures have dominated the research in the area of oxide ion/proton conducting solid electrolytes. In such cases, the key defects are oxide ion vacancies, and conduction proceeds via a simple vacancy hopping mechanism. In recent years, there has been growing interest in alternative structure types, many of which contain tetrahedral moieties. For these new systems, an understanding of the accommodation of defects and the nature of the conduction mechanism is important for the optimisation of their conductivities, as well as to help target related structures that may display high oxide ion/proton conduction. Computer modelling studies on a range of systems containing tetrahedral moieties are presented, including apatite-type La9.33+xGe6O26+3x/2, cuspidine-type La4Ga2-xTixO9+x/2 and La1-xBa1+xGaO4-x/2. The type of anion defect (vacancy or interstitial), their location and the factors affecting their incorporation are discussed. In addition, modelling data to help to understand their conduction mechanisms are presented, showing novel aspects including the important role of the tetrahedral moieties in the conduction processes.
    • Novel Aspects of the Conduction Mechanisms of Electrolytes Containing Tetrahedral Moieties

      Kendrick, E.; Kendrick, John; Orera, A.; Panchmatia, P.; Islam, M.S.; Slater, P.R. (2010-04)
      Traditionally materials with the fluorite and perovskite structures have dominated the research in the area of oxide ion/proton conducting solid electrolytes. In such cases, the key defects are oxide ion vacancies, and conduction proceeds via a simple vacancy hopping mechanism. In recent years, there has been growing interest in alternative structure types, many of which contain tetrahedral moieties. For these new systems, an understanding of the accommodation of defects and the nature of the conduction mechanism is important for the optimisation of their conductivities, as well as to help target related structures that may display high oxide ion/proton conduction. Computer modelling studies on a range of systems containing tetrahedral moieties are presented, including apatite-type La9.33+xGe6O26+3x/2, cuspidine-type La4Ga2¿xTixO9+x/2 and La1¿xBa1+xGaO4¿x/2. The type of anion defect (vacancy or interstitial), their location and the factors affecting their incorporation are discussed. In addition, modelling data to help to understand their conduction mechanisms are presented, showing novel aspects including the important role of the tetrahedral moieties in the conduction processes