• The prediction of blood–tissue partitions, water–skin partitions and skin permeation for agrochemicals

      Abraham, M.H.; Gola, J.M.R.; Ibrahim, A.; Acree, W.E. Jr.; Liu, Xiangli (2014-07)
      BACKGROUND: There is considerable interest in the blood–tissue distribution of agrochemicals, and a number of researchershave developed experimental methods for in vitro distribution. These methods involve the determination of saline–blood andsaline–tissue partitions; not only are they indirect, but they do not yield the required in vivo distribution.RESULTS: The authors set out equations for gas–tissue and blood–tissue distribution, for partition from water into skin andfor permeation from water through human skin. Together with Abraham descriptors for the agrochemicals, these equationscan be used to predict values for all of these processes. The present predictions compare favourably with experimental in vivoblood–tissue distribution where available. The predictions require no more than simple arithmetic.CONCLUSIONS: The present method represents a much easier and much more economic way of estimating blood–tissuepartitions than the method that uses saline–blood and saline–tissue partitions. It has the added advantages of yielding therequired in vivo partitions and being easily extended to the prediction of partition of agrochemicals from water into skin andpermeation from water through skin.
    • A simple method for estimating in vitro air-tissue and in vivo blood-tissue partition coefficients

      Abraham, M.H.; Gola, J.M.R.; Ibrahim, A.; Acree, W.E. Jr.; Liu, Xiangli (2015-02)
      A simple method is reported for the estimation of in vivo air-tissue partition coefficients of VOCs and of in vitro blood-tissue partition coefficients for volatile organic compounds and other compounds. Linear free energy relationships for tissues such as brain, muscle, liver, lung, kidney, heart, skin and fat are available and once the Abraham descriptors are known for a compound, no more than simple arithmetic is required to estimate air-tissue and blood-tissue partitions.