Show simple item record

dc.contributor.advisorParadkar, Anant R.
dc.contributor.advisorGough, Timothy D.
dc.contributor.advisorKelly, Adrian L.
dc.contributor.authorKarandikar, Hrushikesh M.*
dc.date.accessioned2018-02-07T09:59:25Z
dc.date.available2018-02-07T09:59:25Z
dc.date.issued2015
dc.identifier.urihttp://hdl.handle.net/10454/14862
dc.description.abstractApplications of Hot Melt Extrusion (HME) in pharmaceuticals have become increasingly popular over the years but nonetheless a few obstacles still remain before wide scale implementation. In many instances these improvements are related to both processing and product performance. It is observed that HME process optimisation is majorly focused on the active pharmaceutical ingredient's (API) properties. Characterising polymeric properties for their suitability in HME should be equally studied since the impact of excipients on both product and process performance is just as vital. In this work, two well-established cellulose ester derivatives: Hydroxy Propyl Methyl Cellulose Acetate Succinate (HPMCAS) and Hydroxy Propyl Methyl Cellulose Phthalate (HPMCP) are studied for their HME suitability. Their thermal, thermodynamic, rheological, thermo-chemical and degradation kinetic properties were evaluated with model plasticisers and APIs. It was found the thermal properties of HPMCP are severely compromised whereas HPMCAS is more stable in the processing zone of 150 to 200 °C. Thermodynamic properties revealed that both polymers share an important solubility parameter range (20-30 MPa P1/2P) where the majority of plasticisers and BCS class II APIs lie. Thus, greater miscibility/solubility can be expected. Further, the processability of these two polymers investigated by rheometric measurements showed HPMCAS possesses better flow properties than HPMCP because HPMCP forms a weak network of chain interactions at a molecular level. However, adding plasticisers such as PEG and TEC the flow properties of HPMCP can be tailored. The study also showed that plasticisers have a major influence on thermo-chemical and kinetic properties of polymers. For instance, PEG reduced polymer degradation with reversal in kinetic parameters whereas blends of CA produced detrimental effects and increased polymer degradation with reduction in onset degradation temperatures. Further, both polymers are observed to be chemically reactive with the APIs containing free -OH, -SOR2RN- and -NH2 groups. Finally, these properties prove that suitability of HPMCP is highly debated for HME and demands great care in use while that of HPMCAS is relatively better than HPMCP in many instances.en_US
dc.language.isoenen_US
dc.rights<a rel="license" href="http://creativecommons.org/licenses/by-nc-nd/3.0/"><img alt="Creative Commons License" style="border-width:0" src="http://i.creativecommons.org/l/by-nc-nd/3.0/88x31.png" /></a><br />The University of Bradford theses are licenced under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-nd/3.0/">Creative Commons Licence</a>.eng
dc.subjectHot Melt Extrusion (HME); Hydroxy Propyl Methyl Cellulose Acetate Succinate (HPMCAS); Hydroxy Propyl Methyl Cellulose Phthalate (HPMCP); Plasticisers; Thermal degradation-kinetics and mechanism; Polymer-plasticiser interactions; Thermodynamics of miscibility; Low-high shear rate rheology; Impurity quantitation; chlorpropamideen_US
dc.titleSuitability of cellulose ester derivatives in hot melt extrusion.Thermal, rheological and thermodynamic approaches used in the characterization of cellulose ester derivatives for their suitability in pharmaceutical hot melt extrusionen_US
dc.type.qualificationleveldoctoralen_US
dc.publisher.institutionUniversity of Bradfordeng
dc.publisher.departmentSchool of Life Sciencesen_US
dc.typeThesiseng
dc.type.qualificationnamePhDen_US
dc.date.awarded2015
refterms.dateFOA2018-07-28T03:00:42Z


Item file(s)

Thumbnail
Name:
Suitability of Cellulose esters ...
Size:
9.374Mb
Format:
PDF
Description:
PhD Thesis

This item appears in the following Collection(s)

Show simple item record