BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Analysis and modelling of the impact of anomalous propagation on terrestrial microwave links in a subtropical region, based on long-term measurements. Statistical analysis of long-term meteorological and signal strength measurements in a subtropical region and investigation of the impact of anomalous refractivity profiles on radio propagation in terrestrial microwave wireless systems

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    PhD Thesis, Vols I and II (21.45Mb)
    Download
    Publication date
    2015
    Author
    Aboualmal, Abdulhadi M.A.
    Supervisor
    Abd-Alhameed, Raed A.
    Jones, Steven M.R.
    Al-Ahmad, Hussain
    Keyword
    Propagation; Refractivity; k-factor; Super-refraction; Sub-refraction; Ducting; Microwave link; Received Signal Strength; Signal Fading; Radiosonde; United Arab Emirates (UAE)
    Rights
    Creative Commons License
    The University of Bradford theses are licenced under a Creative Commons Licence.
    Institution
    University of Bradford
    Department
    School of Engineering, Design and Technology
    Awarded
    2015
    
    Metadata
    Show full item record
    Abstract
    Prevailing propagation phenomena in certain areas play a vital role in deciding terrestrial wireless systems performance. Vertical refractivity profile below 1 km is a critical parameter for designing reliable systems; noting that there is a shortage of upper-air data worldwide. Anomalous phenomena may cause severe signal fading and interference beyond the horizon. The objectives of this thesis are to investigate dominant refractive conditions in the subtropical Arabian Gulf region, develop new approaches and empirical models for evaluating vertical refractivity profiles and relevant propagation parameters in the low troposphere, and to examine the impact of frequently experienced anomalous phenomena on terrestrial microwave links. Twenty-three years of meteorological measurements, from 1990 to 2013, are utilized using spatially separated surface stations and a single radiosonde in the United Arab Emirates (UAE). Profiles of sea level, surface and upper refractivity components are statistically analysed. Three major atmospheric layers; namely 65 m, 100 m and 1 km above the ground are studied to analyse relevant propagation parameters such as sub-refraction, super-refraction, anomalous propagation probability parameter β0 and point refractivity gradient not exceeded for 1% of time. The effective earth radius factor k is investigated using a new weighted averaged approach. In addition, the seasonal structure of atmospheric ducting is dimensioned within 350 m layer above ground. Finally, microwave measurement campaign is conducted using multiple radio links operating in UAE using various frequency bands. The link budget simulations are compared with the signal strength measurements. Fading scenarios are studied against the observed anomalous conditions and several recommendations are concluded.
    URI
    http://hdl.handle.net/10454/14804
    Type
    Thesis
    Qualification name
    PhD
    Collections
    Theses

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.