BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Bio-DME production based on conventional and CO2-enhanced gasification of biomass: A comparative study on exergy and environmental impacts

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    Mujtaba_Biomass_and_Bioenergy_Final.pdf (944.7Kb)
    Download
    Publication date
    2018-03
    Author
    Parvez, A.M.
    Wu, T.
    Li, S.
    Miles, N.
    Mujtaba, Iqbal M.
    Keyword
    Exergy analysis; Environmental analysis; Bio-DME; CO2-enhanced gasification; Conventional gasification
    Rights
    © 2018 Elsevier. Reproduced in accordance with the publisher's self-archiving policy. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.
    Peer-Reviewed
    Yes
    
    Metadata
    Show full item record
    Abstract
    In this study, a novel single-step synthesis of dimethyl ether (DME) based on CO2-enhanced biomass gasification was proposed and simulated using ASPEN PlusTM modelling. The exergetic and environmental evaluation was performed in comparison with a conventional system. It was found that the fuel energy efficiency, plant energy efficiency and plant exergetic efficiency of the CO2-enhanced system were better than those of the conventional system. The novel process produced 0.59 kg of DME per kg of gumwood with an overall plant energy efficiency of 65%, which were 28% and 5% higher than those of conventional systems, respectively. The overall exergetic efficiency of the CO2-enhanced system was also 7% higher. Exergetic analysis of each individual process unit in both the CO2-enhanced system and conventional systems showed that the largest loss occurred at gasification unit. However, the use of CO2 as gasifying agent resulted in a reduced loss at gasifier by 15%, indicating another advantage of the proposed system. In addition, the LCA analysis showed that the use of CO2 as gasifying agent could also result in less 21 environmental impacts compared with conventional systems, which subsequently made the CO2-22 enhanced system a promising option for a more environmental friendly synthesis of bio-DME.
    URI
    http://hdl.handle.net/10454/14786
    Version
    Accepted Manuscript
    Citation
    Parvez AM, Wu T, Li S et al (2018) Bio-DME production based on conventional and CO2-enhanced gasification of biomass: A comparative study on exergy and environmental impacts. Biomass and Bioenergy. 110: 105-113.
    Link to publisher’s version
    https://doi.org/10.1016/j.biombioe.2018.01.016
    Type
    Article
    Collections
    Engineering and Informatics Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.