Show simple item record

dc.contributor.advisorEbrahimi, Kambiz M.
dc.contributor.advisorPezouvanis, Antonios
dc.contributor.authorSouflas, Ioannis*
dc.date.accessioned2018-01-09T16:14:40Z
dc.date.available2018-01-09T16:14:40Z
dc.date.issued2015
dc.identifier.urihttp://hdl.handle.net/10454/14427
dc.description.abstractA complete chain of analysis and synthesis system identification tools for detectability assessment and adaptive identification of parameters with physical interpretation that can be found commonly in control-oriented powertrain models is presented. This research is motivated from the fact that future powertrain control and monitoring systems will depend increasingly on physically oriented system models to reduce the complexity of existing control strategies and open the road to new environmentally friendly technologies. At the outset of this study a physics-based control-oriented dynamic model of a complete transient engine testing facility, consisting of a single cylinder engine, an alternating current dynamometer and a coupling shaft unit, is developed to investigate the functional relationships of the inputs, outputs and parameters of the system. Having understood these, algorithms for identifiability analysis and adaptive identification of parameters with physical interpretation are proposed. The efficacy of the recommended algorithms is illustrated with three novel practical applications. These are, the development of an on-line health monitoring system for engine dynamometer coupling shafts based on recursive estimation of shaft’s physical parameters, the sensitivity analysis and adaptive identification of engine friction parameters, and the non-linear recursive parameter estimation with parameter estimability analysis of physical and semi-physical cyclic engine torque model parameters. The findings of this research suggest that the combination of physics-based control oriented models with adaptive identification algorithms can lead to the development of component-based diagnosis and control strategies. Ultimately, this work contributes in the area of on-line fault diagnosis, fault tolerant and adaptive control for vehicular systems.en_US
dc.language.isoenen_US
dc.rights<a rel="license" href="http://creativecommons.org/licenses/by-nc-nd/3.0/"><img alt="Creative Commons License" style="border-width:0" src="http://i.creativecommons.org/l/by-nc-nd/3.0/88x31.png" /></a><br />The University of Bradford theses are licenced under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-nd/3.0/">Creative Commons Licence</a>.eng
dc.subjectAutomotive powertrains; Dynamic modelling; Physics-based; Modelling; Linear; Nonlinear; Identifiability; Sensitivity; Adaptive identification; Recursive filters; Condition monitoring; Adaptive identification algorithmsen_US
dc.titleQualitative Adaptive Identification for Powertrain Systems. Powertrain Dynamic Modelling and Adaptive Identification Algorithms with Identifiability Analysis for Real-Time Monitoring and Detectability Assessment of Physical and Semi-Physical System Parametersen_US
dc.type.qualificationleveldoctoralen_US
dc.publisher.institutionUniversity of Bradfordeng
dc.publisher.departmentFaculty of Engineering and Informaticsen_US
dc.typeThesiseng
dc.type.qualificationnamePhDen_US
dc.date.awarded2015
refterms.dateFOA2018-07-29T03:37:50Z


Item file(s)

Thumbnail
Name:
PhD_IS_2015.pdf
Size:
54.80Mb
Format:
PDF
Description:
PhD Thesis

This item appears in the following Collection(s)

Show simple item record