Show simple item record

dc.contributor.advisorEbrahimi, Kambiz M.
dc.contributor.authorKalantzis, Nikolaos*
dc.date.accessioned2018-01-08T16:30:20Z
dc.date.available2018-01-08T16:30:20Z
dc.date.issued2015
dc.identifier.urihttp://hdl.handle.net/10454/14406
dc.description.abstractMicro-cogeneration is one of the technologies promoted as a response to the global call for the reduction of carbon emissions. Due to its recent application in the residential sector, the implications of its usage have not yet been fully explored, while at the same time, the available simulation tools are not designed for conducting research that focuses on the study of this technology. This thesis develops a virtual prototyping environment, using a dynamic multi-physics simulation tool. The model based procedure in its current form focuses on ICE based micro-CHP systems. In the process of developing the models, new approaches on general system, engine, heat exchanger, and dwelling thermal modelling are being introduced to cater for the special nature of the subject. The developed software is a unique modular simulation tool platform linking a number of independent energy generation systems, and presents a new approach in the study and design of the multi node distributed energy system (DES) with the option of further development into a real-time residential energy management system capable of reducing fuel consumption and CO2 emissions in the domestic sector. In the final chapters, the developed software is used to simulate various internal combustion engine based micro-CHP configurations in order to conclude on the system design characteristics, as well as the conditions, necessary to achieve a high technical, economic and environmental performance in the UK residential sector with the purpose of making micro- CHP a viable alternative to the conventional means of heat & power supply.en_US
dc.language.isoenen_US
dc.rights<a rel="license" href="http://creativecommons.org/licenses/by-nc-nd/3.0/"><img alt="Creative Commons License" style="border-width:0" src="http://i.creativecommons.org/l/by-nc-nd/3.0/88x31.png" /></a><br />The University of Bradford theses are licenced under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-nd/3.0/">Creative Commons Licence</a>.eng
dc.subjectSizing; Selection; Combined heat and power (CHP); micro-CHP; Combustion Engine; Residential; Simulation; Modelling; Performance; Emissions; Micro-cogeneration; Residential sectoren_US
dc.titleThermo-Economic Modelling of Micro-Cogeneration Systems System Design for Sustainable Power Decentralization by Multi-Physics System Modelling and Micro-Cogeneration Systems Performance Analysis for the UK Domestic Housing Sectoren_US
dc.type.qualificationleveldoctoralen_US
dc.publisher.institutionUniversity of Bradfordeng
dc.publisher.departmentFaculty of Engineering and Informaticsen_US
dc.typeThesiseng
dc.type.qualificationnamePhDen_US
dc.date.awarded2015
refterms.dateFOA2018-07-29T03:34:28Z


Item file(s)

Thumbnail
Name:
Report_Final_Nikolaos Kalantzis.pdf
Size:
3.547Mb
Format:
PDF
Description:
PhD Thesis

This item appears in the following Collection(s)

Show simple item record