Show simple item record

dc.contributor.authorFlavell, Jonathan*
dc.contributor.authorBarrett, Brendan T.*
dc.contributor.authorBuckley, John G.*
dc.contributor.authorHarris, J.M.*
dc.contributor.authorScally, Andy J.*
dc.contributor.authorBeebe, Nathan B.*
dc.contributor.authorCruickshank, Alice G.*
dc.contributor.authorBennett, S.J.*
dc.date.accessioned2017-12-20T15:32:25Z
dc.date.available2017-12-20T15:32:25Z
dc.date.issued2018-02
dc.identifier.citationFlavell JC, Barrett BT, Buckley JG et al (2018) Temporal estimation in prediction motion tasks is biased by a moving destination. Journal of Vision. 18(5): 1-11.en_US
dc.identifier.urihttp://hdl.handle.net/10454/14282
dc.descriptionYesen_US
dc.description.abstractAn ability to predict the time-to-contact (TTC) of moving objects that become momentarily hidden is advantageous in everyday life and could be particularly so in fast-ball sports. Prediction motion (PM) experiments have sought to test this ability using tasks where a disappearing target moves towards a stationary destination. Here, we developed two novel versions of the PM task in which the destination either moved away from (Chase) or towards (Attract) the moving target. The target and destination moved with different speeds such that collision occurred 750, 1000 or 1250ms after target occlusion. To determine if domain-specific experience conveys an advantage in PM tasks, we compared the performance of different sporting groups ranging from internationally competing athletes to non-sporting controls. There was no difference in performance between sporting groups and non-sporting controls but there were significant and independent effects on response error by target speed, destination speed and occlusion period. We simulated these findings using a revised version of the linear TTC model of response timing for PM tasks (Yakimoff et al. 1987, 1993) in which retinal input from the moving destination biases the internal representation of the occluded target. This revision closely reproduced the observed patterns of response error and thus describes a means by which the brain might estimate TTC when the target and destination are in motion.
dc.language.isoenen_US
dc.relation.isreferencedbyhttps://doi.org/10.1167/18.2.5
dc.rights(c) 2018 The Authors. This is an Open Access article distributed under the Creative Commons CC-BY license (https://creativecommons.org/licenses/by/4.0/)
dc.subjectPrediction motion; Motion extrapolation; Coincidence timing; Time-To-Contact; TTCen_US
dc.titleTemporal estimation in prediction motion tasks is biased by a moving destinationen_US
dc.status.refereedYesen_US
dc.date.Accepted2017-12-13
dc.typeArticleen_US
dc.type.versionPublished versionen_US
refterms.dateFOA2018-07-29T03:00:40Z


Item file(s)

Thumbnail
Name:
flavell_et_al_2018.pdf
Size:
1.232Mb
Format:
PDF
Description:
Keep suppressed - no permission ...
Thumbnail
Name:
flavell_et_al_2018.pdf
Size:
625.3Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record