BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Display statistics

    The importance of contextual factors on the accuracy of estimates in project management. An emergence of a framework for more realistic estimation process

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    DBA Thesis (3.312Mb)
    Download
    Publication date
    2014
    Author
    Lazarski, Adam
    Supervisor
    Hussain, Zahid I.
    Keyword
    Project management; Estimation process; Estimation framework; Estimation technique; Estimation-related risk; Knowledge-based estimation; Project scheduling; Critical chain; Buffer management
    Rights
    Creative Commons License
    The University of Bradford theses are licenced under a Creative Commons Licence.
    Institution
    University of Bradford
    Department
    School of Management
    Awarded
    2014
    
    Metadata
    Show full item record
    Abstract
    Successful projects are characterized by the quality of their planning. Good planning that better takes into account contextual factors allows more accurate estimates to be achieved. As an outcome of this research, a new framework composed of best practices has been discovered. This comprises an open platform that project experts and practitioners can work with efficiently, and that researchers can develop further as required. The research investigation commenced in the autumn of 2008 with a pilot study and then proceeded through an inductive research process, involving a series of eleven interviews. These consisted of interviews with four well-recognized experts in the field, four interviews with different practitioners and three group interviews. In addition, a long-running observation of forty-five days was conceptualized, together with other data sources, before culminating in the proposal of a new framework for improving the accuracy of estimates. Furthermore, an emerging framework – and a description of its know-how in terms of application – have been systematically reviewed through the course of four hundred twenty-five days of meetings, dedicated for the most part to improving the use of a wide range of specific project management tools and techniques and to an improvement in understanding of planning and the estimation process associated with it. This approach constituted an ongoing verification of the research’s findings against project management practice and also served as an invaluable resource for the researcher’s professional and practice-oriented development. The results obtained offered fresh insights into the importance of knowledge management in the estimation process, including the “value of not knowing”, the oft-overlooked phenomenon of underestimation and its potential to co-exist with overestimation, and the use of negative buffer management in the critical chain concept to secure project deadlines. The project also highlighted areas of improvement for future research practice that wishes to make use of an inductive approach in order to achieve a socially agreed framework, rather than a theory alone. In addition, improvements were suggested to the various qualitative tools employed in the customized data analysis process.
    URI
    http://hdl.handle.net/10454/13661
    Type
    Thesis
    Qualification name
    DBA
    Collections
    Theses

    entitlement

     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Analogy-based software project effort estimation. Contributions to projects similarity measurement, attribute selection and attribute weighting algorithms for analogy-based effort estimation.

      Neagu, Daniel; Cowling, Peter I.; Azzeh, Mohammad Y.A. (University of BradfordDepartment of Computing School of Computing, Informatics & Media, 2010-10-01)
      Software effort estimation by analogy is a viable alternative method to other estimation techniques, and in many cases, researchers found it outperformed other estimation methods in terms of accuracy and practitioners¿ acceptance. However, the overall performance of analogy based estimation depends on two major factors: similarity measure and attribute selection & weighting. Current similarity measures such as nearest neighborhood techniques have been criticized that have some inadequacies related to attributes relevancy, noise and uncertainty in addition to the problem of using categorical attributes. This research focuses on improving the efficiency and flexibility of analogy-based estimation to overcome the abovementioned inadequacies. Particularly, this thesis proposes two new approaches to model and handle uncertainty in similarity measurement method and most importantly to reflect the structure of dataset on similarity measurement using Fuzzy modeling based Fuzzy C-means algorithm. The first proposed approach called Fuzzy Grey Relational Analysis method employs combined techniques of Fuzzy set theory and Grey Relational Analysis to improve local and global similarity measure and tolerate imprecision associated with using different data types (Continuous and Categorical). The second proposed approach presents the use of Fuzzy numbers and its concepts to develop a practical yet efficient approach to support analogy-based systems especially at early phase of software development. Specifically, we propose a new similarity measure and adaptation technique based on Fuzzy numbers. We also propose a new attribute subset selection algorithm and attribute weighting technique based on the hypothesis of analogy-based estimation that assumes projects that are similar in terms of attribute value are also similar in terms of effort values, using row-wise Kendall rank correlation between similarity matrix based project effort values and similarity matrix based project attribute values. A literature review of related software engineering studies revealed that the existing attribute selection techniques (such as brute-force, heuristic algorithms) are restricted to the choice of performance indicators such as (Mean of Magnitude Relative Error and Prediction Performance Indicator) and computationally far more intensive. The proposed algorithms provide sound statistical basis and justification for their procedures. The performance figures of the proposed approaches have been evaluated using real industrial datasets. Results and conclusions from a series of comparative studies with conventional estimation by analogy approach using the available datasets are presented. The studies were also carried out to statistically investigate the significant differences between predictions generated by our approaches and those generated by the most popular techniques such as: conventional analogy estimation, neural network and stepwise regression. The results and conclusions indicate that the two proposed approaches have potential to deliver comparable, if not better, accuracy than the compared techniques. The results also found that Grey Relational Analysis tolerates the uncertainty associated with using different data types. As well as the original contributions within the thesis, a number of directions for further research are presented. Most chapters in this thesis have been disseminated in international journals and highly refereed conference proceedings.
    • Thumbnail

      Estimating the Effect of Nonresponse Bias in a Survey of Hospital Organizations

      Lewis, Emily F.; Hardy, Maryann L.; Snaith, Beverly (2013)
      Nonresponse bias in survey research can result in misleading or inaccurate findings and assessment of nonresponse bias is advocated to determine response sample representativeness. Four methods of assessing nonresponse bias (analysis of known characteristics of a population, subsampling of nonresponders, wave analysis, and linear extrapolation) were applied to the results of a postal survey of U.K. hospital organizations. The purpose was to establish whether validated methods for assessing nonresponse bias at the individual level can be successfully applied to an organizational level survey. The aim of the initial survey was to investigate trends in the implementation of radiographer abnormality detection schemes, and a response rate of 63.7% (325/510) was achieved. This study identified conflicting trends in the outcomes of analysis of nonresponse bias between the different methods applied and we were unable to validate the continuum of resistance theory as applied to organizational survey data. Further work is required to ensure established nonresponse bias analysis approaches can be successfully applied to organizational survey data. Until then, it is suggested that a combination of methods should be used to enhance the rigor of survey analysis.
    • Thumbnail

      Universal approach for estimating unknown frequencies for unknown number of sinusoids in a signal

      Ahmed, A.; Hu, Yim Fun; Pillai, Prashant (2013)
      This paper presents a new approach to estimate the unknown frequencies of the constituent sinusoids in a noiseless signal. The signal comprising of unknown number of sinusoids of unknown amplitudes and unknown phases is measured in the time domain. The Hankel matrix of measured samples is used as a basis for further analysis in the Pisarenko harmonic decomposition. A new constraint, the Existence Factor (EF), has been introduced in the methodology based on the relationship between the frequencies of the unknown sinusoids and the eigenspace of Hankel matrix of signal's samples. The accuracy of the method has been tested through multiple simulations on different signals with an unknown number of sinusoidal components. Results showed that the proposed method has efficiently estimated all the unknown frequencies.
    DSpace software (copyright © 2002 - 2021)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.