BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Life Sciences
    • Life Sciences Publications
    • View Item
    •   Bradford Scholars
    • Life Sciences
    • Life Sciences Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Development and Characterization of Acellular Porcine Pulmonary Valve Scaffolds for Tissue Engineering

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    Main article (703.8Kb)
    Download
    Publication date
    2014-06
    Author
    Luo, J.
    Korossis, S.A.
    Wilshaw, Stacy-Paul
    Jennings, L.M.
    Fisher, J.
    Ingham, E.
    Keyword
    Acellular Porcine Pulmonary Valve Scaffolds; Tissue Engineering; Replacement heart valves
    Rights
    This work is licensed under a Creative Commons Attribution 3.0 United States License. You are free to copy, distribute, transmit and adapt this work, but you must attribute this work as ‘‘Tissue Engineering, Part A. Copyright 2014 Mary Ann Liebert, Inc. http://liebertpub.com/tea, used under a Creative Commons Attribution License: http://creativecommons.org/licenses/by/3.0/us/’’
    Peer-Reviewed
    yes
    
    Metadata
    Show full item record
    Abstract
    Currently available replacement heart valves all have limitations. This study aimed to produce and characterize an acellular, biocompatible porcine pulmonary root conduit for reconstruction of the right ventricular outflow tract e.g., during Ross procedure. A process for the decellularization of porcine pulmonary roots was developed incorporating trypsin treatment of the adventitial surface of the scraped pulmonary artery and sequential treatment with hypotonic Tris buffer (HTB; 10 mM Tris pH 8.0, 0.1% (w/v) EDTA, and 10 KIU aprotinin), 0.1% (w/v) sodium dodecyl sulfate in HTB, two cycles of DNase and RNase, and sterilization with 0.1% (v/v) peracetic acid. Histology confirmed an absence of cells and retention of the gross histoarchitecture. Im-munohistochemistry further confirmed cell removal and partial retention of the extracellular matrix, but a loss of collagen type IV. DNA levels were reduced by more than 96% throughout all regions of the acellular tissue and no functional genes were detected using polymerase chain reaction. Total collagen levels were retained but there was a significant loss of glycosaminoglycans following decellularization. The biomechanical, hydrody-namic, and leaflet kinematics properties were minimally affected by the process. Both immunohistochemical labeling and antibody absorption assay confirmed a lack of a-gal epitopes in the acellular porcine pulmonary roots and in vitro biocompatibility studies indicated that acellular leaflets and pulmonary arteries were not cytotoxic. Overall the acellular porcine pulmonary roots have excellent potential for development of a tissue substitute for right ventricular outflow tract reconstruction e.g., during the Ross procedure.
    URI
    http://hdl.handle.net/10454/12960
    Version
    Published version
    Citation
    Luo J, Korossis SA, Wilshaw S-P, Jennings LM, Fisher J and Ingham E (2014) Development and Characterization of Acellular Porcine Pulmonary Valve Scaffolds for Tissue Engineering. Tissue Engineering Part A. 20(21-22): 2963-2974.
    Link to publisher’s version
    https://doi.org/10.1089/ten.tea.2013.0573
    Type
    Article
    Collections
    Life Sciences Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.