BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Simplified three-dimensional finite element hot-spotting modelling of a pin-mounted vented brake disc: an investigation of hot-spotting determinants

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    Bryant_Journal_of_Automobile_Engineering.pdf (3.325Mb)
    Download
    Publication date
    2018-06
    Author
    Tang, Jinghan
    Bryant, David
    Qi, Hong Sheng
    Whiteside, Benjamin R.
    Babenko, Maksims
    Keyword
    Finite element method; Brake disc; Hot spotting; Parametric study; Thermoelastic instability; Temperature
    Rights
    The final, definitive version of this paper has been published in Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol 232/issue 7 by SAGE Publications Ltd, All rights reserved. © 2017 IMechE.
    Peer-Reviewed
    Yes
    
    Metadata
    Show full item record
    Abstract
    Hot spotting is a thermal localisation phenomenon in which multiple hot regions form on a brake disc surface during high energy and/or high speed braking events. As an undesired problem, hot spots can result in high order brake judder, audible drone and thermal cracking. This paper presents a finite element model for hot spot modelling which introduces the classical axisymmetric assumptions to the brake pad in 3D by scaling the material properties combined with a subroutine to simulate the heat generation instead of modelling the rotation of the brake pad. The results from the initial feasibility models showed significant improvement in computing efficiency with acceptable accuracy when compared to a traditional FE model without such simplifications. This method was then applied to the 3D simulation of hot spotting on a realistic ventilated brake disc/pad pair and the results showed good correlation with experiments. In order to improve the understanding of the hot spotting mechanism, parametric studies were performed including the effects of solid and ventilated disc geometry, rotational speed and energy, pins, disc run-out, and brake pad length. Based on the analysis of the results, it was identified that the vents and pins affected the hot spot distribution. Speed was shown to be more important on the hot spot generation time and distribution than either the pressure or total energy input. Brake disc run-out was shown to affect the magnitude of both hot spot temperature and height due to the non-linear relationship between local deformation, contact pressure and heat generation. Finally, increasing the brake pad length generated fewer hot spots but the temperature of each hot spot increased.
    URI
    http://hdl.handle.net/10454/12420
    Version
    Accepted Manuscript
    Citation
    Tang J, Bryant D, Qi H et al (2018) Simplified three-dimensional finite element hot-spotting modelling of a pin-mounted vented brake disc: an investigation of hot-spotting determinants. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 232(7): 877-895.
    Link to publisher’s version
    https://doi.org/10.1177/0954407017713080
    Type
    Article
    Collections
    Engineering and Informatics Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.