BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Evaluating energy-efficient cloud radio access networks for 5G

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    Pillai_DSDIS.pdf (500.9Kb)
    Download
    Publication date
    2016-02-04
    Author
    Sigwele, Tshiamo
    Alam, Atm S.
    Pillai, Prashant
    Hu, Yim Fun
    Keyword
    Virtualization; BBU reduction; Cloud computing; C-RAN; Energy-efficiency
    Rights
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Peer-Reviewed
    Yes
    
    Metadata
    Show full item record
    Abstract
    Next-generation cellular networks such as fifth-generation (5G) will experience tremendous growth in traffic. To accommodate such traffic demand, there is a necessity to increase the network capacity that eventually requires the deployment of more base stations (BSs). Nevertheless, BSs are very expensive and consume a significant amount of energy. Meanwhile, cloud radio access networks (C-RAN) has been proposed as an energy-efficient architecture that leverages cloud computing technology where baseband processing is performed in the cloud, i.e., the computing servers or baseband processing units (BBUs) are located in the cloud. With such an arrangement, more energy saving gains can be achieved by reducing the number of BBUs used. This paper proposes a bin packing scheme with three variants such as First-fit (FT), First-fit decreasing (FFD) and Next-fit (NF) for minimizing energy consumption in 5G C-RAN. The number of BBUs are reduced by matching the right amount of baseband computing load with traffic load. In the proposed scheme, BS traffic items that are mapped into processing requirements, are to be packed into computing servers, called bins, such that the number of bins used are minimized and idle servers can then be switched off to save energy. Simulation results demonstrate that the proposed bin packing scheme achieves an enhanced energy performance compared to the existing distributed BS architecture.
    URI
    http://hdl.handle.net/10454/11103
    Version
    Accepted Manuscript
    Citation
    Sigwele T, Alam AS, Pillai P et al (2015) Evaluating energy-efficient cloud radio access networks for 5-G. In: 2015 IEEE International Conference on Data Science and Data Intensive Systems (DSDIS). 11-13 Dec 2015, Sydney, Australia.
    Link to publisher’s version
    http://dx.doi.org/10.1109/DSDIS.2015.73
    Type
    Conference paper
    Collections
    Engineering and Informatics Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.