BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Health Studies
    • Health Studies Publications
    • View Item
    •   Bradford Scholars
    • Health Studies
    • Health Studies Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Design, development and deployment of a hand/wrist exoskeleton for home-based rehabilitation after stroke - SCRIPT project

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    Mountain_Robotica.pdf (854.3Kb)
    Download
    Publication date
    2014-12
    Author
    Amirabdollahian, F.
    Ates, S.
    Basteris, A.
    Cesario, A.
    Buurke, J.H.
    Hermens, H.J.
    Hofs, D.
    Johansson, E.
    Mountain, Gail
    Nasr, N.
    Nijenhuis, S.M.
    Prange, G.B.
    Rahman, N.
    Sale, P.
    Schatzlein, F.
    van Schooten, B.
    Stienen, A.H.A.
    Show allShow less
    Keyword
    Rehabilitation technology; Home-based therapy systems; Stroke rehabilitation; Adaptive systems
    Rights
    © Cambridge University Press 2014. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
    Peer-Reviewed
    Yes
    
    Metadata
    Show full item record
    Abstract
    Changes in world-wide population trends have provided new demands for new technologies in areas such as care and rehabilitation. Recent developments in the the field of robotics for neurorehabilitation have shown a range of evidence regarding usefulness of these technologies as a tool to augment traditional physiotherapy. Part of the appeal for these technologies is the possibility to place a rehabilitative tool in one’s home, providing a chance for more frequent and accessible technologies for empowering individuals to be in charge of their therapy. Objective: this manuscript introduces the Supervised Care and Rehabilitation Involving Personal Tele-robotics (SCRIPT) project. The main goal is to demonstrate design and development steps involved in a complex intervention, while examining feasibility of using an instrumented orthotic device for home-based rehabilitation after stroke. Methods: the project uses a user-centred design methodology to develop a hand/wrist rehabilitation device for home-based therapy after stroke. The patient benefits from a dedicated user interface that allows them to receive feedback on exercise as well as communicating with the health-care professional. The health-care professional is able to use a dedicated interface to send/receive communications and remote-manage patient’s exercise routine using provided performance benchmarks. Patients were involved in a feasibility study (n=23) and were instructed to use the device and its interactive games for 180 min per week, around 30 min per day, for a period of 6 weeks, with a 2-months follow up. At the time of this study, only 12 of these patients have finished their 6 weeks trial plus 2 months follow up evaluation. Results: with the “use feasibility” as objective, our results indicate 2 patients dropping out due to technical difficulty or lack of personal interests to continue. Our frequency of use results indicate that on average, patients used the SCRIPT1 device around 14 min of self-administered therapy a day. The group average for the system usability scale was around 69% supporting system usability. Conclusions: based on the preliminary results, it is evident that stroke patients were able to use the system in their homes. An average of 14 min a day engagement mediated via three interactive games is promising, given the chronic stage of stroke. During the 2nd year of the project, 6 additional games with more functional relevance in their interaction have been designed to allow for a more variant context for interaction with the system, thus hoping to positively influence the exercise duration. The system usability was tested and provided supporting evidence for this parameter. Additional improvements to the system are planned based on formative feedback throughout the project and during the evaluations. These include a new orthosis that allows a more active control of the amount of assistance and resistance provided, thus aiming to provide a more challenging interaction.
    URI
    http://hdl.handle.net/10454/11009
    Version
    Published version
    Citation
    Amirabdollahian F, Ates S, Basteris A et al (2014) Design, development and deployment of a hand/wrist exoskeleton for home-based rehabilitation after stroke – SCRIPT project. Robotica. 32(8): 1331-1346.
    Link to publisher’s version
    http://dx.doi.org/10.1017/S0263574714002288
    Type
    Article
    Collections
    Health Studies Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.