Show simple item record

dc.contributor.advisorMujtaba, Iqbal M.
dc.contributor.authorSowgath, Md Tanvir
dc.date.accessioned2016-12-16T16:45:40Z
dc.date.available2016-12-16T16:45:40Z
dc.date.issued2007
dc.identifier.urihttp://hdl.handle.net/10454/10998
dc.description.abstractDesalination technology provides fresh water to the arid regions around the world. Multi-Stage Flash (MSF) distillation process has been used for many years and is now the largest sector in the desalination industry. Top Brine Temperature (TBT) (boiling point temperature of the feed seawater in the first stage of the process) is one of the many important parameters that affect optimal design and operation of MSF processes. For a given pressure, TBT is a function of Boiling Point Temperature (BPT) at zero salinity and Temperature Elevation (TE) due to salinity. Modelling plays an important role in simulation, optimisation and control of MSF processes and within the model, calculation of TE is therefore important for each stages (including the first stage, which determines the TBT). Firstly, in this work, several Neural Network (NN) based correlations for predicting TE are developed. It is found that the NN based correlations can predict the experimental TE very closely. Also predictions of TE by the NN based correlations were found to be good when compared to those obtained using the existing correlations from the literature. Secondly, a hybrid steady state MSF process model is developed using gPROMS modelling tool embedding the NN based correlation. gPROMS provides an easy and flexible platform to build a process flowsheet graphically. Here a Master Model connecting (automatically) the individual unit model (brine heater, stages, etc.) equations is developed which is used repeatedly during simulation and optimisation. The model is validated against published results. Seawater is the main source raw material for MSF processes and is subject to seasonal temperature variation. With fixed design the model is then used to study the effect of a number of parameters (e.g. seawater and steam temperature) on the freshwater production rate. It is observed that, the variation in the parameters affect the rate of production of fresh water. How the design and operation are to be adjusted to maintain a fixed demand of fresh water through out the year (with changing seawater temperature) is also investigated via repetitive simulation. Thirdly, with clear understanding of the interaction of design and operating parameters, simultaneous optimisation of design and operating parameters of MSF process is considered via the application MINLP technique within gPROMS. Two types of optimisation problems are considered: (a) For a fixed fresh water demand throughout the year, the external heat input (a measure of operating cost) to the process is minimised; (b) For different fresh water demand throughout the year and with seasonal variation of seawater temperature, the total annualised cost of desalination is minimised. It is found that seasonal variation in seawater temperature results in significant variation in design and some of the operating parameters but with minimum variation in process temperatures. The results also reveal the possibility of designing stand-alone flash stages which would offer flexible scheduling in terms of the connection of various units (to build up the process) and efficient maintenance of the units throughout the year as the weather condition changes. In addition, operation at low temperatures throughout the year will reduce design and operating costs in terms of low temperature materials of construction and reduced amount of anti-scaling and anti-corrosion agents. Finally, an attempt was made to develop a hybrid dynamic MSF process model incorporating NN based correlation for TE. The model was validated at steady state condition using the data from the literature. Dynamic simulation with step changes in seawater and steam temperature was carried out to match the predictions by the steady state model. Dynamic optimisation problem is then formulated for the MSF process, subjected to seawater temperature change (up and down) over a period of six hours, to maximise a performance ratio by optimising the brine heater steam temperature while maintaining a fixed water demand.en_US
dc.language.isoenen_US
dc.rights<a rel="license" href="http://creativecommons.org/licenses/by-nc-nd/3.0/"><img alt="Creative Commons License" style="border-width:0" src="http://i.creativecommons.org/l/by-nc-nd/3.0/88x31.png" /></a><br />The University of Bradford theses are licenced under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-nd/3.0/">Creative Commons Licence</a>.en_US
dc.subjectMSF desalination process; Neural networks; Modelling; Simulation; Optimisation; Water demand; Design; Operation; Flexible Scheduling; gPROMS modelling toolen_US
dc.titleNeural network based hybrid modelling and MINLP based optimisation of MSF desalination process within gPROMS: Development of neural network based correlations for estimating temperature elevation due to salinity, hybrid modelling and MINLP based optimisation of design and operation parameters of MSF desalination process within gPROMSen_US
dc.type.qualificationleveldoctoralen_US
dc.publisher.institutionUniversity of Bradfordeng
dc.publisher.departmentSchool of Engineering Design and Technologyen_US
dc.typeThesiseng
dc.type.qualificationnamePhDen_US
dc.date.awarded2007
refterms.dateFOA2018-07-25T15:49:17Z


Item file(s)

Thumbnail
Name:
Sowgath_NEURAL NETWORK BASED ...
Size:
2.595Mb
Format:
PDF
Description:
Thesis

This item appears in the following Collection(s)

Show simple item record