BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Life Sciences
    • Life Sciences Publications
    • View Item
    •   Bradford Scholars
    • Life Sciences
    • Life Sciences Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Physicochemical and antibacterial characterization of a novel fluorapatite coating

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    Katsikogianni_ACS_Omega.pdf (1.992Mb)
    Download
    Publication date
    2016-08
    Author
    Alhilou, A.
    Do, T.
    Mizban, L.
    Clarkson, B.H.
    Wood, David J.
    Katsikogianni, Maria G.
    Keyword
    Dental implants; Peri-implantitis; Fluorapatite; Physicochemical properties
    Rights
    © 2016 American Chemical Society. ACS AuthorChoice - This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
    Peer-Reviewed
    Yes
    
    Metadata
    Show full item record
    Abstract
    Peri-implantitis remains the major impediment to the long-term use of dental implants. With increasing concern over the growth in antibiotic resistance, there is considerable interest in the preparation of antimicrobial dental implant coatings that also induce osseointegration. One such potential coating material is fluorapatite (FA). The aim of this study was to relate the antibacterial effectiveness of FA coatings against pathogens implicated in peri-implantitis to the physicochemical properties of the coating. Ordered and disordered FA coatings were produced on the under and upper surfaces of stainless steel (SS) discs, respectively, using a hydrothermal method. Surface charge, surface roughness, wettability, and fluoride release were measured for each coating. Surface chemistry was assessed using X-ray photoelectron spectroscopy and FA crystallinity using X-ray diffraction. Antibacterial activity against periodontopathogens was assessed in vitro using viable counts, confocal microscopy, and scanning electron microscopy (SEM). SEM showed that the hydrothermal method produced FA coatings that were predominately aligned perpendicular to the SS substrate or disordered FA coatings consisting of randomly aligned rodlike crystals. Both FA coatings significantly reduced the growth of all examined bacterial strains in comparison to the control. The FA coatings, especially the disordered ones, presented significantly lower charge, greater roughness, and higher area when compared to the control, enhancing bacteria−material interactions and therefore bacterial deactivation by fluoride ions. The ordered FA layer reduced not only bacterial viability but adhesion too. The ordered FA crystals produced as a potential novel implant coating showed significant antibacterial activity against bacteria implicated in peri-implantitis, which could be explained by a detailed understanding of their physicochemical properties.
    URI
    http://hdl.handle.net/10454/10913
    Version
    Published version
    Citation
    Alhilou A, Do T, Mizban L et al (2016) Physicochemical and antibacterial characterization of a novel fluorapatite coating. ACS Omega. 1(2): 264-276.
    Link to publisher’s version
    http://dx.doi.org/10.1021/acsomega.6b00080
    Type
    Article
    Collections
    Life Sciences Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.