Show simple item record

dc.contributor.authorBoucsein, A.*
dc.contributor.authorBenzler, J.*
dc.contributor.authorHempp, C.*
dc.contributor.authorStöhr, S.*
dc.contributor.authorHelfer, Gisela*
dc.contributor.authorTups, A.*
dc.date.accessioned2016-11-29T12:27:41Z
dc.date.available2016-11-29T12:27:41Z
dc.date.issued2016-02
dc.identifier.citationBouscein A, Benzler J, Hempp C, Stoehr S, Helfer G and Tups A (2016) Photoperiodic and diurnal regulation of WNT signalling in the arcuate nucleus of the female Djungarian hamster, Phodopus sungorus. Endocrinology. 157(2): 799-809.en_US
dc.identifier.urihttp://hdl.handle.net/10454/10852
dc.descriptionyesen_US
dc.description.abstractThe WNT pathway was shown to play an important role in the adult central nervous system. We previously identified the WNT pathway as a novel integration site of the adipokine leptin in mediating its neuroendocrine control of metabolism in obese mice. Here we investigated the implication of WNT signaling in seasonal body weight regulation exhibited by the Djungarian hamster (Phodopus sungorus), a seasonal mammal that exhibits profound annual changes in leptin sensitivity. We furthermore investigated whether crucial components of the WNT pathway are regulated in a diurnal manner. Gene expression of key components of the WNT pathway in the hypothalamus of hamsters acclimated to either long day (LD) or short day (SD) photoperiod was analyzed by in situ hybridization. We detected elevated expression of the genes WNT-4, Axin-2, Cyclin-D1, and SFRP-2, in the hypothalamic arcuate nucleus, a key energy balance integration site, during LD compared with SD as well as a diurnal regulation of Axin-2, Cyclin-D1, and DKK-3. Investigating the effect of photoperiod as well as leptin on the activation (phosphorylation) of the WNT coreceptor LRP-6-(Ser1490) by immunohistochemistry, we found elevated activity in the arcuate nucleus during LD relative to SD as well as after leptin treatment (2 mg/kg body weight). These findings indicate that differential WNT signaling may be associated with seasonal body weight regulation and is partially regulated in a diurnal manner in the adult brain. Furthermore, they suggest that this pathway plays a key role in the neuroendocrine regulation of body weight and integration of the leptin signal.en_US
dc.language.isoenen_US
dc.rights© 2016 Endocrine Society. Reproduced in accordance with the publisher's self-archiving policy.en_US
dc.subjectPhotoperiod; WNT signalling; Arcuate nucleus; Djungarian hamster; Phodopus sungorus; Seasonal body weight regulation; Diurnal regulationen_US
dc.titlePhotoperiodic and diurnal regulation of WNT signalling in the arcuate nucleus of the 1 female Djungarian hamster, Phodopus sungorusen_US
dc.status.refereedyesen_US
dc.date.Accepted2015-11-25
dc.date.application2015-12-08
dc.typeArticleen_US
dc.type.versionAccepted Manuscripten_US
dc.identifier.doihttps://doi.org/10.1210/en.2015-1708
refterms.dateFOA2018-07-26T09:20:50Z


Item file(s)

Thumbnail
Name:
Boucsein et al 2016_author ...
Size:
419.4Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record