Dynamic Behavior Analysis of Membrane-Inspired Evolutionary Algorithms
Publication date
2014Keyword
Membrane computingMembrane-inspired evolutionary algorithm
Dynamic behavior
Quantum-inspired evolutionary algorithm
Knapsack problem
Tissue p systems
Differential evolution
Optimization problems
Peer-Reviewed
YesOpen Access status
closedAccess
Metadata
Show full item recordAbstract
A membrane-inspired evolutionary algorithm (MIEA) is a successful instance of a model linking membrane computing and evolutionary algorithms. This paper proposes the analysis of dynamic behaviors of MIEAs by introducing a set of population diversity and convergence measures. This is the first attempt to obtain additional insights into the search capabilities of MIEAs. The analysis is performed on the MIEA, QEPS (a quantum-inspired evolutionary algorithm based on membrane computing), and its counterpart algorithm, QIEA (a quantum-inspired evolutionary algorithm), using a comparative approach in an experimental context to better understand their characteristics and performances. Also the relationship between these measures and fitness is analyzed by presenting a tendency correlation coefficient to evaluate the importance of various population and convergence measures, which is beneficial to further improvements of MIEAs. Results show that QEPS can achieve better balance between convergence and diversity than QIEA, which indicates QEPS has a stronger capacity of balancing exploration and exploitation than QIEA in order to prevent premature convergence that might occur. Experiments utilizing knapsack problems support the above made statement.Version
No full-text in the repositoryCitation
Zhang GX, Cheng JX and Gheorghe M (2014) Dynamic Behavior Analysis of Membrane-Inspired Evolutionary Algorithms. International Journal of Computers Communications & Control. 9(2): 227-242.Link to Version of Record
https://doi.org/10.15837/ijccc.2014.2.794Type
Articleae974a485f413a2113503eed53cd6c53
https://doi.org/10.15837/ijccc.2014.2.794