BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Integrated microarray analytics for the discovery of gene signatures for triple-negative breast cancer

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Publication date
    2014
    Author
    Zaka, Masood-Ul-Hassan
    Peng, Yonghong
    Sutton, Chris W.
    Keyword
    Breast cancer; Accuracy; Gene expression; Bioinformatics; Robustness; Immune system; cancer; Genetics; Patient diagnostics; Medical computing
    Peer-Reviewed
    Yes
    
    Metadata
    Show full item record
    Abstract
    Triple-negative breast cancers (TNBC) are clinically heterogeneous, an aggressive form of breast cancer with poor diagnosis and highly therapeutic resistant. It is urgently needed for identifying novel biomarkers with increased sensitivity and specificity for early detection and personalised therapeutic intervention. Microarray profiling offered significant advances in molecular classification but sample scarcity and cohort heterogeneity remains challenging areas. Here, we investigated diagnostics signatures derived from human triple-negative tissue. We applied REMARK criteria for the selection of relevant studies and compared the signatures gene lists directly as well as assessed their classification performance in predicting diagnosis using leave-one-out cross-validation. The cross-validation results shows excellent classification accuracy ratios using all data sets. A subset signature (17-gene) extracted from the convergence of eligible signatures have also achieved excellent classification accuracy of 89.37% across all data sets. We also applied gene ontology functional enrichment analysis to extract potentially biological process, pathways and network involved in TNBC disease progression. Through functional analysis, we recognized that these independent signatures have displayed commonalities in functional pathways of cell signaling, which play important role in the development and progression of TNBC. We have also identified five unique TNBC pathways genes (SYNCRIP, NFIB, RGS4, UGCG, LOX and NNMT), which could be important for therapeutic interventions as indicated by their close association with known drivers of TNBC and previously published experimental studies.
    URI
    http://hdl.handle.net/10454/10822
    Version
    No full-text in the repository
    Citation
    Zaka MUH, Peng Y and Sutton CW (2014) Integrated microarray analytics for the discovery of gene signatures for triple-negative breast cancer. In: 14th UK Workshop on Computational Intelligence (UKCI). Bradford, UK: 1-6.
    Link to publisher’s version
    https://doi.org/10.1109/UKCI.2014.6930192
    Type
    Conference Paper
    Collections
    Life Sciences Publications
    Engineering and Informatics Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.