Show simple item record

dc.contributor.authorVera-Sorroche, Javier
dc.contributor.authorKelly, Adrian L.
dc.contributor.authorBrown, Elaine C.
dc.contributor.authorGough, Timothy D.
dc.contributor.authorAbeykoon, Chamil
dc.contributor.authorCoates, Philip D.
dc.contributor.authorDeng, J.
dc.contributor.authorLi, K.
dc.contributor.authorHarkin-Jones, E.
dc.contributor.authorPrice, M.
dc.date.accessioned2016-11-28T15:15:43Z
dc.date.available2016-11-28T15:15:43Z
dc.date.issued2014-11-11
dc.identifier.citationVera-Sorroche J, Kelly AL, Brown EC et al (2014) The effect of melt viscosity on thermal efficiency for single screw extrusion of HDPE. Chemical Engineering Research and Design. 92(11): 2404-2412.
dc.identifier.urihttp://hdl.handle.net/10454/10804
dc.descriptionYes
dc.description.abstractIn this work, a highly instrumented single screw extruder has been used to study the effect of polymer rheology on the thermal efficiency of the extrusion process. Three different molecular weight grades of high density polyethylene (HDPE) were extruded at a range of conditions. Three geometries of extruder screws were used at several set temperatures and screw rotation speeds. The extruder was equipped with real-time quantification of energy consumption; thermal dynamics of the process were examined using thermocouple grid sensors at the entrance to the die. Results showed that polymer rheology had a significant effect on process energy consumption and thermal homogeneity of the melt. Highest specific energy consumption and poorest homogeneity was observed for the highest viscosity grade of HDPE. Extruder screw geometry, set extrusion temperature and screw rotation speed were also found to have a direct effect on energy consumption and melt consistency. In particular, specific energy consumption was lower using a barrier flighted screw compared to single flighted screws at the same set conditions. These results highlight the complex nature of extrusion thermal dynamics and provide evidence that rheological properties of the polymer can significantly influence the thermal efficiency of the process. (C) 2014 The Authors. Published by Elsevier B.V. All rights reserved.
dc.relation.isreferencedbyhttps://doi.org/10.1016/j.cherd.2013.12.025
dc.rights© 2016 The Authors. This is an Open Access article distributed under the Creative Commons CC-BY license (http://creativecommons.org/licenses/by/4.0/)
dc.subjectPolymer extrusion
dc.subject; Melt temperature
dc.subject; Energy
dc.subject; Rheology
dc.titleThe effect of melt viscosity on thermal efficiency for single screw extrusion of HDPE
dc.status.refereedYes
dc.date.Accepted2013-12-16
dc.date.application2013-12-29
dc.typeArticle
dc.type.versionPublished version
refterms.dateFOA2018-07-26T09:20:14Z


Item file(s)

Thumbnail
Name:
vera_sorroche_et_al_2014.pdf
Size:
2.562Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record