BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Display statistics

    Modelling and simulations of MSF desalination plant: the effect of venting system design for non-condensabe gases

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Publication date
    2014
    Author
    Alsadaie, S.M.
    Mujtaba, Iqbal M.
    Peer-Reviewed
    Yes
    
    Metadata
    Show full item record
    Abstract
    The presence of non-condensable gases )NCGs( such as carbon dioxide, nitrogen, oxygen, and argon caused by air leakages to stages and the release of dissolved gases in brine have, even small proportions, great effect on the heat transfer rate at the vapour side of the stage condensers. Due to the low conductivity of these gases, they work as insulation material and decrease the heat transfer rate and in turn they affect the plant performance. In this work, a dynamic mathematical model is developed and implemented to analyse the effect of NCGs in MSF desalination process using gPROMS software. The model is based on coupling the mass balance, energy balance and heat transfer equations with supporting correlations for physical properties calculations. The effect of NCGs on heat transfer rate and the variation of the amount of NCGs from stage to stage are studied. The present model is validated against actual plant data collected from literature. The results showed a good agreement with actual data. The results showed that the concentration of NCGs in the vapour space depends on the location of venting points and the rate release of the NCGs. Also the results revealed that the overall heat transfer coefficient (OHTC) is affected by high concentration of NCGs. The optimum location of the venting system can be obtained by variation of the venting stages.
    URI
    http://hdl.handle.net/10454/10581
    Version
    No full-text in the repository
    Citation
    Alsadaie SM and Mujtaba IM (2014) Modelling and simulations of MSF desalination plant: the effect of venting system design for non-condensabe gases. Chemical Engineering Transactions. 39: 1615-1620.
    Link to publisher’s version
    http://www.aidic.it/cet/14/39/270.pdf
    Type
    Article
    Collections
    Engineering and Informatics Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2021)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.