BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Life Sciences
    • Life Sciences Publications
    • View Item
    •   Bradford Scholars
    • Life Sciences
    • Life Sciences Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Novel formation of [2M-H](+) species in positive electrospray mass spectra of indoles

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Publication date
    2014
    Author
    Saidykhan, Amie
    Ayrton, Stephen T.
    Gallagher, R.T.
    Martin, William H.C.
    Bowen, Richard D.
    Keyword
    Dimerisation; Indoles; Nebulisers; Vaporisers; Spectrometry; Electrospray ionisation; Mass
    Peer-Reviewed
    Yes
    
    Metadata
    Show full item record
    Abstract
    When subjected to positive ion electrospray ionisation (ESI+) mass spectrometry (MS), indoles with a 3-alkyl substituent show a propensity to form novel [2M-H](+) 'covalently bound dimers'. This process, which appears to be initiated in the nebuliser of the instrument, is mechanistically interesting, analytically useful and potentially significant in organic synthesis. A selection of 2- and 3-substituted indoles have been synthesised and analysed by ESI-MS. The formation of the 'homo' and 'hetero' dimers of these compounds has been investigated using ESI+ mode. The mechanism of formation of the observed 'dimeric' species has been probed by synthesising authentic samples of the dimeric compounds. 'Dimeric' species corresponding to [2M-H](+) have been observed for all 3-substituted indoles studied, but not for indoles substituted in just the 2-position. By infusing equimolar mixtures of labelled and unlabelled indoles through the instrument, the expected approximately statistical mixture of homo- and heterodimeric species has been observed. Further experiments have established that this novel dimerisation occurs in the droplets formed in the nebuliser of the instrument. It has been shown that 3-substituted indoles form [2M-H](+) dimers in high abundance in the spray obtained from the nebiliser of an ESI+ instrument. The mechanism for the dimerisation does not involve the known 2M dimeric species that is readily formed in the solution-phase chemistry of indoles.
    URI
    http://hdl.handle.net/10454/10523
    Version
    No full-text available in the repository
    Citation
    Saidykhan A, Ayrton ST, Gallagher RT et al (2014) Novel formation of [2M-H](+) species in positive electrospray mass spectra of indoles. Rapid Communications in Mass Spectrometry. 28(17): 1948-1952.
    Link to publisher’s version
    https://doi.org/10.1002/rcm.6976
    Type
    Article
    Collections
    Life Sciences Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.