BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Development of a Dynamic Fouling Model for a Heat Exchanger

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    Main article (588.3Kb)
    Download
    Publication date
    2016
    Author
    Zahid, Khayyam
    Patel, Rajnikant
    Mujtaba, Iqbal M.
    Keyword
    Heat exchangers; Fouling; Dynamic fouling model
    Peer-Reviewed
    yes
    
    Metadata
    Show full item record
    Abstract
    Fouling in heat exchangers (HE) is a major problem in industry and accurate prediction of the onset or degree of fouling would be of a huge benefit to the operators. Modelling of the fouling phenomenon however, remains a challenging field of study. Cleaning of heat exchangers, coulpled with the down time, is a financial burden and for industrialized nations and costs can reach to almost 0.25 % of the country’s Gross National Product (Pritchard, 1988).This work presents the development of a dynamic fouling model based on experimental data collected using a laboratory concentric tube heat exchanger handling a saline system. Heat transfer coefficients were obtained from first principles as well as from either the Sieder-Tate or Petukhov-Kirillov correlations modified by Gnielinski depending on the flow regime. The outlet temperatures were calculated using the Effectiveness-NTU method. The dynamic fouling factor was based on the Kern and Seaton fouling model and validation was completed by comparing the experimental outlet temperatures with those predicted by the model. The model predicts the outlet temperatures with an average discrepancy of 1.6 °C and 0.4 °C for the cold and hot streams respectively.
    URI
    http://hdl.handle.net/10454/10372
    Version
    Published version
    Citation
    Zahid K, Patel R and Mujtaba IM ( 2016) Development of a Dynamic Fouling Model for a Heat Exchanger. Chemical Engineering Transactions. 52 (1135).
    Link to publisher’s version
    http://www.aidic.it/cet/16/52/190.pdf
    Type
    Article
    Collections
    Engineering and Informatics Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.