BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Analysis of the interface heat partition in a friction brake system with 2D Fe models

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Publication date
    2016-11-04
    Author
    Qiu, L.
    Qi, Hong Sheng
    Wood, Alastair S.
    Keyword
    Conductance; Clearance; Heat partition; Pressure; Thermal effect; Heat flux
    Peer-Reviewed
    Yes
    
    Metadata
    Show full item record
    Abstract
    A 2D finite element model of frictional heating in a pad-disc brake system is proposed for analyzing the heat partition and heat flux at the pad/disc interface during braking. And further find out how long the model can reach a thermal stable situation. The temperature on the friction surfaces of automotive brake is an influential factor of the brake performance. A formulation of friction heat generation during braking with constant velocity is presented, and the effects of thermal contact resistance on a contact surface are simulated by ABAQUS with different thermal contact conductance/clearance settings. The heat partition at contact surface with different time instants are analyzed. Results show that the heat partition along the interface is affected by the interface contact pressure and the thermal contact conductance. Additionally, results based upon the proposed model show that at normal thermal contact conductance conditions, typically 104 W/m2K for friction brake applications, the heat partition and the interface temperature become sensitive to the interface pressure variation, in comparison with that under ideal high thermal contact conductance condition (or low thermal contact resistance condition), typically 106 W/m2K. The comparison between results from simulations with different interface thermal conductance values indicate the parameters are sensitive in normal thermal conductance applications and how thermal conductance affect brake performance. And it is worthy to try control interface thermal conductance by using different pad/disc materials to make interface thermal conductance at a proper value.
    URI
    http://hdl.handle.net/10454/10227
    Version
    No full-text in the repository
    Citation
    Qiu L, Qi H and Wood AS (2016) Analysis of the interface heat partition in a friction brake system with 2D Fe models. In: Proceedings of the EuroBrake 2016 Conference. 13-15 Jun 2016, Milan, Italy.
    Link to publisher’s version
    http://2016.eurobrake.net/programme/technical-programme/EB2016-FBR-016
    Type
    Conference paper
    Collections
    Engineering and Informatics Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.