Proton transfer and hydrogen bonding in the organic solid state: a combined XRD/XPS/ssNMR study of 17 organic acid–base complexes
View/ Open
stevens_et_al_2014.pdf (1.770Mb)
Download
Publication date
2014-01-21Rights
(c) 2014 The Authors. This is an Open Access article published under the Creative Commons CC-BY license (http://creativecommons.org/licenses/by/3.0/)Peer-Reviewed
YesOpen Access status
openAccessAccepted for publication
2013-11-05
Metadata
Show full item recordAbstract
The properties of nitrogen centres acting either as hydrogen-bond or Brønsted acceptors in solid molecular acid–base complexes have been probed by N 1s X-ray photoelectron spectroscopy (XPS) as well as 15N solid-state nuclear magnetic resonance (ssNMR) spectroscopy and are interpreted with reference to local crystallographic structure information provided by X-ray diffraction (XRD). We have previously shown that the strong chemical shift of the N 1s binding energy associated with the protonation of nitrogen centres unequivocally distinguishes protonated (salt) from hydrogen-bonded (co-crystal) nitrogen species. This result is further supported by significant ssNMR shifts to low frequency, which occur with proton transfer from the acid to the base component. Generally, only minor chemical shifts occur upon co-crystal formation, unless a strong hydrogen bond is formed. CASTEP density functional theory (DFT) calculations of 15N ssNMR isotropic chemical shifts correlate well with the experimental data, confirming that computational predictions of H-bond strengths and associated ssNMR chemical shifts allow the identification of salt and co-crystal structures (NMR crystallography). The excellent agreement between the conclusions drawn by XPS and the combined CASTEP/ssNMR investigations opens up a reliable avenue for local structure characterization in molecular systems even in the absence of crystal structure information, for example for non-crystalline or amorphous matter. The range of 17 different systems investigated in this study demonstrates the generic nature of this approach, which will be applicable to many other molecular materials in organic, physical, and materials chemistry.Version
Published versionCitation
Stevens JS, Byard SJ, Seaton CC et al (2014) Proton transfer and hydrogen bonding in the organic solid state: a combined XRD/XPS/ssNMR study of 17 organic acid–base complexes. Physical Chemistry Chemical Physics. 16(3): 1150-1160.Link to Version of Record
https://doi.org/10.1039/C3CP53907EType
Articleae974a485f413a2113503eed53cd6c53
https://doi.org/10.1039/C3CP53907E