BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The Physical Chemistry of pMDI Formulations Derived from Hydrofluoroalkane Propellants. A Study of the Physical Behaviour of Poorly Soluble Active Pharmaceutical Ingredients; Bespoke Analytical Method Development Leading to Novel Formulation Approaches for Product Development.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    Thesis Final - 171013.pdf (30.64Mb)
    Download
    Publication date
    2013
    Author
    Telford, Richard
    Supervisor
    Scowen, Ian J.
    Munshi, Tasnim
    Keyword
    Pressurised metered dose inhaler (pMDI); Hydrofluoroalkanes (HFAs); Analytical method development; Inhalation; Formulation; Complexation
    Rights
    Creative Commons License
    The University of Bradford theses are licenced under a Creative Commons Licence.
    Institution
    University of Bradford
    Department
    Department of Chemical and Forensic Science
    Awarded
    2013
    
    Metadata
    Show full item record
    Abstract
    Active Pharmaceutical Ingredients (APIs) are frequently prepared for delivery to the lung for local topical treatment of diseases such as Chronic Obstructive Pulmonary Disease (COPD) and asthma, or for systemic delivery. One of the most commonly used devices for this purpose is the pressurised metered dose inhaler (pMDI) whereby drugs are formulated in a volatile propellant held under pressure. The compound is aerosolised to a respirably sized dose on actuation, subsequently breathed in by the user. The use of hydrofluoroalkanes (HFAs) in pMDIs since the Montreal Protocol initiated a move away from chlorofluorocarbon (CFC) based devices has resulted in better performing products, with increased lung deposition and a concomitant reduction in oropharyngeal deposition. The physical properties of HFA propellants are however poorly understood and their capacity for solubilising inhaled pharmaceutical products (IPPs) and excipients used historically in CFCs differ significantly. There is therefore a drive to establish methodologies to study these systems in-situ and post actuation to adequately direct formulation strategies for the production of stable and efficacious suspension and solution based products. Characterisation methods have been applied to pMDI dosage systems to gain insight into solubility in HFAs and to determine forms of solid deposits after actuation. A novel quantitative nuclear magnetic resonance method to investigate the physical chemistry of IPPs in these preparations has formed the centrepiece to these studies, accessing solubility data in-situ and at pressure for the first time in HFA propellants. Variable temperature NMR has provided thermodynamic data through van’t Hoff approaches. The methods have been developed and validated using budesonide to provide limits of determination as low as 1 μg/mL and extended to 11 IPPs chosen to represent currently prescribed inhaled corticosteroids (ICS), β2-adrenoagonists and antimuscarinic bronchodilators, and have highlighted solubility variations between the classes of compounds with lipophilic ICSs showing the highest, and hydrophilic β2- agonist / antimuscarinics showing the lowest solubilities from the compounds under study. To determine solid forms on deposition, a series of methods are also described using modified impaction methods in combination with analytical approaches including spectroscopy (μ-Raman), X-ray diffraction, SEM, chromatography and thermal analysis. Their application has ascertained (i) physical form / morphology data on commercial pMDI formulations of the ICS beclomethasone dipropionate (QVAR® / Sanasthmax®, Chiesi) and (ii) distribution assessment in-vitro of ICS / β2-agonist compounds from combination pMDIs confirming co-deposition (Seretide® / Symbicort®, GlaxoSmithKline / AstraZeneca). In combination, these methods provide a platform for development of new formulations based on HFA propellants. The methods have been applied to a number of ‘real’ systems incorporating derivatised cyclodextrins and the co-solvent ethanol, and provide a basis for a comprehensive study of solubilisation of the ICS budesonide in HFA134a using two approaches: mixed solvents and complexation. These new systems provide a novel approach to deliver to the lung, with reduced aerodynamic particle size distribution (APSD) potentially accessing areas suitable for delivery to peripheral areas of the lung (ICS) or to promote systemic delivery.
    URI
    http://hdl.handle.net/10454/10098
    Type
    Thesis
    Qualification name
    PhD
    Collections
    Theses

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.