BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Life Sciences
    • Life Sciences Publications
    • View Item
    •   Bradford Scholars
    • Life Sciences
    • Life Sciences Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The prediction of blood–tissue partitions, water–skin partitions and skin permeation for agrochemicals

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    Liu_Pest_Management_Science.pdf (578.8Kb)
    Download
    Publication date
    2014-07
    Author
    Abraham, M.H.
    Gola, J.M.R.
    Ibrahim, A.
    Acree, W.E. Jr.
    Liu, Xiangli
    Keyword
    LFER; Abraham descriptors; Blood–tissue partition; Air–tissue partition; Water–skin partition: Skin permeation
    Rights
    © 2014 Wiley. This is the peer reviewed version of the following article: [Abraham MH, Gola JMR, Ibrahim A et al. (2014) The prediction of blood-tissue partitions, water-skin partitions and skin permeation for agrochemicals. Pest Management Science. 70(7): 1130-1137], which has been published in final form at [http://dx.doi.org/10.1002/ps.3658]. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
    Peer-Reviewed
    Yes
    
    Metadata
    Show full item record
    Abstract
    BACKGROUND: There is considerable interest in the blood–tissue distribution of agrochemicals, and a number of researchershave developed experimental methods for in vitro distribution. These methods involve the determination of saline–blood andsaline–tissue partitions; not only are they indirect, but they do not yield the required in vivo distribution.RESULTS: The authors set out equations for gas–tissue and blood–tissue distribution, for partition from water into skin andfor permeation from water through human skin. Together with Abraham descriptors for the agrochemicals, these equationscan be used to predict values for all of these processes. The present predictions compare favourably with experimental in vivoblood–tissue distribution where available. The predictions require no more than simple arithmetic.CONCLUSIONS: The present method represents a much easier and much more economic way of estimating blood–tissuepartitions than the method that uses saline–blood and saline–tissue partitions. It has the added advantages of yielding therequired in vivo partitions and being easily extended to the prediction of partition of agrochemicals from water into skin andpermeation from water through skin.
    URI
    http://hdl.handle.net/10454/10082
    Version
    Accepted Manuscript
    Citation
    Abraham MH, Gola JMR, Ibrahim A et al. (2014) The prediction of blood-tissue partitions, water-skin partitions and skin permeation for agrochemicals. Pest Management Science. 70(7): 1130-1137.
    Link to publisher’s version
    http://dx.doi.org/10.1002/ps.3658
    Type
    Article
    Collections
    Life Sciences Publications

    entitlement

     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Analytical Modelling and Optimization of Congestion Control for Prioritized Multi-Class Self-Similar Traffic

      Min, Geyong; Jin, X. (2013)
      Traffic congestion in communication networks can dramatically deteriorate user-perceived Quality-of-Service (QoS). The integration of the Random Early Detection (RED) and priority scheduling mechanisms is a promising scheme for congestion control and provisioning of differentiated QoS required by multimedia applications. Although analytical modelling of RED congestion control has received significant research efforts, the performance models reported in the current literature were primarily restricted to the RED algorithm only without consideration of traffic scheduling scheme for QoS differentiation. Moreover, for analytical tractability, these models were developed under the simplified assumption that the traffic follows Short-Range-Dependent (SRD) arrival processes (e.g., Poisson or Markov processes), which are unable to capture the self-similar nature (i.e., scale-invariant burstiness) of multimedia traffic in modern communication networks. To fill these gaps, this paper presents a new analytical model of RED congestion control for prioritized multi-class self-similar traffic. The closed-form expressions for the loss probability of individual traffic classes are derived. The effectiveness and accuracy of the model are validated through extensive comparison between analytical and simulation results. To illustrate its application, the model is adopted as a cost-effective tool to investigate the optimal threshold configuration and minimize the required buffer space with congestion control.
    • Thumbnail

      A new paradigm for disc-pad interface models in friction brake system

      Qiu, L.; Qi, Hong Sheng; Wood, Alastair S. (2015)
      In this paper a 2D coupled thermal-stress finite element model is established and used to predict thermal phenomena at the disc-pad interface of a disc brake system. The importance of certain critical settings and parameters for the 2D FE model has been identified (such as, a limited degree of freedom for a brake pad in place of accepted practice that considers uniform contact), here a non-uniform pressure distribution resulting from friction bending moment effects due to the introduction of a pivot point. These parameters affect the distributions of both interface temperature and pressure. The simulation results show that when the interface conductance h is 10^6 W/m^2K or higher, the interface temperature distribution is no longer sensitive to friction bending moment effects. However, when h is 30000 W/m^2K or lower, the interface temperature distribution and heat partition ratio are significantly affected by the setting used for the rotational degree of freedom of the pad. The simulation results provide a useful reference for a better design of a disc brake system for different applications.
    • Thumbnail

      Phase space methods in finite quantum systems.

      Vourdas, Apostolos; Hadhrami, Hilal Al (University of BradfordDepartment of Computing, 2010-03-03)
      Quantum systems with finite Hilbert space where position x and momentum p take values in Z(d) (integers modulo d) are considered. Symplectic tranformations S(2¿,Z(p)) in ¿-partite finite quantum systems are studied and constructed explicitly. Examples of applying such simple method is given for the case of bi-partite and tri-partite systems. The quantum correlations between the sub-systems after applying these transformations are discussed and quantified using various methods. An extended phase-space x¿p¿X¿P where X, P ¿ Z(d) are position increment and momentum increment, is introduced. In this phase space the extended Wigner and Weyl functions are defined and their marginal properties are studied. The fourth order interference in the extended phase space is studied and verified using the extended Wigner function. It is seen that for both pure and mixed states the fourth order interference can be obtained.
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.