Loading...
Thumbnail Image
Publication

Nickel plated carbon nanotubes reinforcing concrete composites: from nano/micro structures to macro mechanical properties

Dong, S.
Wang, D.
Han, B.
Ou, J.
Publication Date
2021-02
End of Embargo
Supervisor
Rights
© 2020 Elsevier. Reproduced in accordance with the publisher's self-archiving policy. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.
Peer-Reviewed
Yes
Open Access status
Accepted for publication
Institution
Department
Awarded
Embargo end date
Additional title
Abstract
Owing to their small size, good wettability, uniform dispersion ability and high thermal properties, the nickel-plated carbon nanotubes (Ni-CNTs) with different aspect ratios are used to reinforce reactive powder concrete (RPC) through modifying the nano/micro- structural units of concrete. Incorporating only 0.075 vol% of Ni-CNTs (0.03 vol% of CNTs) can significantly increase mechanical properties of RPC. The enhancement effect on compressive strength caused by the incorporation of Ni-CNTs with aspect ratio of 1000 reaches 26.8%/23.0 MPa, mainly benefiting from the high polymerization C-S-H gels, low porosity, and refined pore structure. The 33.5%/1.92 MPa increases of flexural strength can be attributed to the decrease of large pore, original cracks, molar ratio of CaO to SiO2, and gel water content when Ni-CNTs with aspect ratio of 125 are added. Ni-CNTs with aspect ratio of 1500 have the largest utilization rate of being pulled-out, resulting from the improvement of dispersibility and the pining effect of nickel coating and then leading to the increased toughness. Therefore, incorporating Ni-CNTs can fundamentally modify the nano/micro- scale structural nature of RPC, providing a bottom-up approach for controlling the properties of RPC.
Version
Accepted manuscript
Citation
Dong S, Wang D, Ashour AF et al (2021) Nickel plated carbon nanotubes reinforcing concrete composites: from nano/micro structures to macro mechanical properties. Composites Part A: Applied Science and Manufacturing. 141: 106228.
Link to publisher’s version
Link to published version
Type
Article
Qualification name
Notes