Loading...
Experimental analysis of unreinforced and reinforced piled embankment subjected to cyclic loads
Aqoub, Khaled M. A.
Aqoub, Khaled M. A.
Publication Date
2018
End of Embargo
Supervisor
Rights

The University of Bradford theses are licenced under a Creative Commons Licence.
Peer-Reviewed
Open Access status
Accepted for publication
Institution
University of Bradford
Department
Faculty of Engineering and Informatics
Awarded
2018
Embargo end date
Collections
Abstract
Reinforced piled embankment technique is becoming increasingly utilised for the construction over soft grounds. Most of the studies focused on studying the behaviour of piled embankments that are loaded with static surcharge load. However, less attention has been given to the behaviour of piled embankments under cyclic loading conditions.
In this study, an experimental programme has been undertaken to improve our understanding for the behaviour of unreinforced and reinforced shallow piled embankments subject to cyclic loadings that are applied over a specific area of the embankment. The results showed that arching of the soil was adversely affected during the initial stages of cyclic loading regardless of the embankment height. However, regain of strength and recovery of the arching effect was observable during further stages of cyclic loadings. Inclusion of reinforcement layers was found to enhance the performance of load transfer mechanisms. The surface settlement increased with raising the embankment height and reduced with increasing the number of reinforcement layers.
Two preliminary experimental studies have been carried out in order to be able to understand and design the main experiment. The results showed that with increasing number of reinforcement layers, enormous cycles of loading could be applied without experiencing excessive deformation or loss of bearing resistance. Furthermore, it was observed that alternating the direction of movement significantly affected the formation of arching during the initial cycles irrespective of the embankment height.
Version
Citation
Link to publisher’s version
Link to published version
Link to Version of Record
Type
Thesis
Qualification name
PhD