Publication

Characterization of the hollow fiber assay for the determination of microtubule disruption in vivo.

Suggitt, Marie
Swaine, David J.
Pettit, G.R.
Bibby, Michael C.
Publication Date
2004
End of Embargo
Supervisor
Rights
Peer-Reviewed
Yes
Open Access status
closedAccess
Accepted for publication
Institution
Department
Awarded
Embargo end date
Additional title
Abstract
Purpose: The hollow fiber assay is used successfully as a routine in vivo screening model to quantitatively define anticancer activity by the National Cancer Institute. This study investigates whether the hollow fiber assay can be used as a short-term in vivo model to demonstrate specific pharmacodynamic end points, namely microtubule and cell cycle disruption. Experimental Design: The growth of A549 cells was characterized within hollow fibers over 5 days in vivo at both subcutaneous (s.c.) and intraperitoneal (i.p.) sites. Drugs were administered on day 4 (i.p.). Results: At 24 hours, cells were retrieved from fibers at both i.p. and s.c. sites of paclitaxel-treated (20 mg/kg) and combretastatin A1 phosphate¿treated (150 mg/kg) mice. Cell cycle analysis after paclitaxel treatment revealed a mean G2-M phase population of 48.04% (i.p.) and 25.76% (s.c.) compared with vehicle group mice (6.78 and 5.56%, respectively; P = <0.001 and 0.005, respectively). Tumor cells retrieved from combretastatin A1 phosphate¿treated mice had a mean G2-M phase population of 36.3% (i.p.) and 29.36% (s.c.) compared with cells retrieved from vehicle group mice (5.58 and 5.49%, respectively; P = <0.001). Using fluorescence and laser-confocal microscopy, paclitaxel was revealed to induce the formation of spindle asters and tubulin polymerization. Combretastatin A1 phosphate was shown to hold cells in mitosis. Changes in nuclear morphology were also observed. Conclusion: These data demonstrate that the hollow fiber assay can be used as a short-term in vivo model for studying the pharmacodynamic effects of both standard and novel compounds on microtubules. Evidence has also been provided to support the routine use of the in vivo hollow fiber assay for demonstrating the mechanism of action of a drug.
Version
No full-text in the repository
Citation
Suggitt, M., Swaine, D.J., Pettit, G.R. and Bibby, M.C. (2004). Characterization of the hollow fiber assay for the determination of microtubule disruption in vivo. Clinical Cancer Research. Vol. 10, No. 19, pp. 6677-6685.
Link to publisher’s version
Link to published version
Type
Article
Qualification name
Notes