Loading...
Thumbnail Image
Publication

Design and implementation of band rejected antennas using adaptive surface meshing and genetic algorithms methods. Simulation and measurement of microstrip antennas with the ability of harmonic rejection for wireless and mobile applications including the antenna design optimisation using genetic algorithms.

Bin-Melha, Mohammed S.
Publication Date
2014-05-30
End of Embargo
Rights
Creative Commons License
The University of Bradford theses are licenced under a Creative Commons Licence.
Peer-Reviewed
Open Access status
Accepted for publication
Institution
University of Bradford
Department
School of Engineering, Design and Technology
Awarded
2013
Embargo end date
Collections
Additional title
Abstract
With the advances in wireless communication systems, antennas with different shapes and design have achieved great demand and are desirable for many uses such as personal communication systems, and other applications involving wireless communication. This has resulted in different shapes and types of antenna design in order to achieve different antenna characteristic. One attractive approach to the design of antennas is to suppress or attenuate harmonic contents due to the non-linear operation of the Radio Frequency (RF) front end. The objectives of this work were to investigate, design and implement antennas for harmonic suppression with the aid of a genetic algorithm (GA). Several microstrip patch antennas were designed to operate at frequencies 1.0, 1.8 and 2.4 GHz respectively. The microstrip patch antenna with stub tuned microstrip lines was also employed at 1.0 and 1.8 GHz to meet the design objectives. A new sensing patch technique is introduced and applied in order to find the accepted power at harmonic frequencies. The evaluation of the measured power accepted at the antenna feed port was done using an electromagnetic (EM) simulator, Ansoft Designer, in terms of current distribution. A two sensors method is presented on one antenna prototype to estimate the accepted power at three frequencies. The computational method is based on an integral equation solver using adaptive surface meshing driven by a genetic algorithm. Several examples are demonstrated, including design of coaxially-fed, air-dielectric patch antennas implanted with shorting and folded walls. The characteristics of the antennas in terms of the impedance responses and far field radiation patterns are discussed. The results in terms of the radiation performance are addressed, and compared to measurements. The presented results of these antennas show a good impedance matching at the fundamental frequency with good suppression achieved at the second and third harmonic frequencies.
Version
Citation
Link to publisher’s version
Link to published version
Link to Version of Record
Type
Thesis
Qualification name
PhD
Notes