Loading...
Thumbnail Image
Publication

Comparative Analysis of Machine Learning Algorithms on Activity Recognition from Wearable Sensors’ MHEALTH dataset Supported with a Comprehensive Process and Development of an Analysis Tool

Sheraz, Nasir
Publication Date
2019
End of Embargo
Rights
Creative Commons License
The University of Bradford theses are licenced under a Creative Commons Licence.
Peer-Reviewed
Open Access status
Accepted for publication
Institution
University of Bradford
Department
Faculty of Engineering and Informatics
Awarded
2019
Embargo end date
Collections
Additional title
Abstract
Human activity recognition based on wearable sensors’ data is quite an attractive subject due to its wide application in the fields of healthcare, wellbeing and smart environments. This research is also focussed on predictive performance comparison of machine learning algorithms for activity recognition from wearable sensors’ (MHEALTH) data while employing a comprehensive process. The framework is adapted from well-laid data science practices which addressed the data analyses requirements quite successfully. Moreover, an Analysis Tool is also developed to support this work and to make it repeatable for further work. A detailed comparative analysis is presented for five multi-class classifier algorithms on MHEALTH dataset namely, Linear Discriminant Analysis (LDA), Classification and Regression Trees (CART), Support Vector Machines (SVM), K-Nearest Neighbours (KNN) and Random Forests (RF). Beside using original MHEALTH data as input, reduced dimensionality subsets and reduced features subsets were also analysed. The comparison is made on overall accuracies, class-wise sensitivity and specificity of each algorithm, class-wise detection rate and detection prevalence in comparison to prevalence of each class, positive and negative predictive values etc. The resultant statistics have also been compared through visualizations for ease of understanding and inference. All five ML algorithms were applied for classification using the three sets of input data. Out of all five, three performed exceptionally well (SVM, KNN, RF) where RF was best with an overall accuracy of 99.9%. Although CART did not perform well as a classification algorithm, however, using it for ranking inputs was a better way of feature selection. The significant sensors using CART ranking were found to be accelerometers and gyroscopes; also confirmed through application of predictive ML algorithms. In dimensionality reduction, the subset data based on CART-selected features yielded better classification than the subset obtained from PCA technique.
Version
Citation
Link to publisher’s version
Link to published version
Link to Version of Record
Type
Thesis
Qualification name
MPhil
Notes