Publication

A General 4th-Order PDE Method to Generate Bézier Surfaces from the Boundary

Monterde, J.
Ugail, Hassan
Publication Date
2006
End of Embargo
Supervisor
Rights
Peer-Reviewed
Yes
Open Access status
closedAccess
Accepted for publication
Institution
Department
Awarded
Embargo end date
Additional title
Abstract
In this paper we present a method for generating Bézier surfaces from the boundary information based on a general 4th-order PDE. This is a generalisation of our previous work on harmonic and biharmonic Bézier surfaces whereby we studied the Bézier solutions for Laplace and the standard biharmonic equation, respectively. Here we study the Bézier solutions of the Euler¿Lagrange equation associated with the most general quadratic functional. We show that there is a large class of fourth-order operators for which Bézier solutions exist and hence we show that such operators can be utilised to generate Bézier surfaces from the boundary information. As part of this work we present a general method for generating these Bézier surfaces. Furthermore, we show that some of the existing techniques for boundary based surface design, such as Coons patches and Bloor¿Wilson PDE method, are indeed particular cases of the generalised framework we present here.
Version
No full-text in the repository
Citation
Monterde, J. and Ugail, H. (2006). A General 4th-Order PDE Method to Generate Bézier Surfaces from the Boundary. Computer Aided Geometric Design. Vol. 23, No. 2, pp. 208-225.
Link to publisher’s version
Link to published version
Type
Article
Qualification name
Notes