Loading...
Genotoxic effects of NSAIDs and hydrocortisone in bulk and nano forms in lymphocytes from patients with haematological cancers
Normington, Charmaine
Normington, Charmaine
Publication Date
End of Embargo
Supervisor
Keywords
Rights

The University of Bradford theses are licenced under a Creative Commons Licence.
Peer-Reviewed
Open Access status
Accepted for publication
Institution
University of Bradford
Department
Faculty of Life Sciences
Awarded
2017
Embargo end date
Collections
Additional title
Abstract
Chronic inflammation is intimately linked with cancer development and progression and therefore reducing or eliminating inflammation represents a logical treatment and prevention strategy. Studies have shown that anti-inflammatory agents have anti-tumour effects in cancers, with reduced metastases and mortality. Current use of anti-inflammatory agents in the treatment and prevention of cancer is limited by their toxicity and side effects. The emerging field of nanotechnology allows the fundamental properties of a drug to be altered, creating a product with improved reactivity and bioavailability, leading to more targeted treatments and reduced dosage. In the present study, the genotoxic effects of three commonly used anti-inflammatory drugs; aspirin, ibuprofen and hydrocortisone, in their bulk and nano forms were evaluated on peripheral blood lymphocytes of healthy donors using the comet assay and the micronucleus assay. In order to determine any anti-cancer effects, these agents were also tested in peripheral blood lymphocytes in patients with haematological cancers. The glucocorticoid hydrocortisone was also evaluated for anti-oxidant capacity. Our results demonstrate that the nano versions of each drug produced a different response than the bulk counterpart, indicating that a reduction in particle size had an impact on the reactivity of the drug. Our results also indicate that the nano versions of each drug were less genotoxic than the bulk formulation, further emphasising the potential of nanoparticles as an improvement to current treatment options. We also found an anti-oxidant effect with hydrocortisone, with a more profound effect seen with the nano formulation.
Version
Citation
Link to publisher’s version
Link to published version
Link to Version of Record
Type
Thesis
Qualification name
MPhil