Loading...
Thumbnail Image
Publication

A Novel Multiple Access Quantum Key Distribution Network for Secure Communication. An Investigation into The Use of Laws of Quantum Physics And Communication Protocols To Enable Multiple Clients To Exchange Quantum Keys In A Lan Environment For Secure Communication

Saleem, Faisal
Publication Date
2019
End of Embargo
Rights
Creative Commons License
The University of Bradford theses are licenced under a Creative Commons Licence.
Peer-Reviewed
Open Access status
Accepted for publication
Institution
University of Bradford
Department
Faculty of Engineering and Informatics
Awarded
2019
Embargo end date
Collections
Additional title
Abstract
Every business and household rely on internet in this day and age. We are using electronic devices connected to the Internet. These devices are generating a considerable amount of data, which is usually transmitted using public/insecure communication channels. On the one hand, the technological advancement of universal connectivity brought so much ease for humans’ race in business, shopping, and financial transactions. The rapid pace of this technological advancement also introduced several concerns in terms of the security and secrecy of data. Security researchers developed several encryption algorithms that are in use to ensure the safety and confidentiality of data. The mathematical difficulty of prime factorisation is the fundamental element of modern encryption algorithms, and they require a considerable amount of processing power to reverse engineer (or break) these algorithms. Scientists and government agencies are trying to build quantum computers to solve some complex problems. These problems include prime factorisation of large numbers, a critical factor in the field of cryptography. Quantum computers are much more potent because of their nature. It processes information by using laws of quantum. The successful development of quantum computers will pit the security and secrecy of our data at risk because it is trivial for the quantum computer to break the currently used encryption algorithms. Bearing this in mind, Research have started working on systems that will provide secure communications in the age of quantum computing. Considering the importance of quantum physics-based communication systems, we have some working examples of these systems, which are called quantum key distribution systems (QKD). These system uses quantum physics to transmit quantum states from one party to another. In case of the presence of Eavesdropping, the whole system will be disturbed, letting both parties know the existence of eve. QKD systems have some success and have different protocols, but until now, they have a very long way to go. When these systems are mature enough, they will require to work with current internet infrastructure, which is very costly and brings so much complexity to the network that it will not be feasible to implement. This thesis proposes a Multiple Access QKD Network integrated with Internet infrastructure to addresses these issues of Secure Communication. The system proposed in this thesis takes existing protocols of data communication, QKD, along with hardware architecture of communication devices. A QKD based client and network switch have been designed and developed along with its operating system to enable multi-access communication in the LAN environment. A simulation model of the model proposed in this thesis has been by using OMNet++ simulation framework to test and evaluate the viability of this model. The proposed QKD mechanism will reduce the complexity for network administrators, reduce the cost of implementation for businesses, and ensure the secrecy and security of the data even in the age of quantum computing.
Version
Citation
Link to publisher’s version
Link to published version
Link to Version of Record
Type
Thesis
Qualification name
PhD
Notes