Loading...
Thumbnail Image
Publication

The dietary flavonol quercetin ameliorates angiotensin II-induced redox signaling imbalance in a human unbilical vein endothelial cell model of endothelial dysfunction via ablation of p47phox expression

Gordon, A.
Magwensi, S.G.
Naseem, K.
Atkin, S.L.
Courts, F.L.
Publication Date
2016-04
End of Embargo
Supervisor
Rights
© 2016 Wiley. This is the peer-reviewed version of the following article: Jones HS, Gordon A, Magwenzi SG et al (2016) The dietary flavonol quercetin ameliorates angiotensin II-induced redox signaling imbalance in a human unbilical vein endothelial cell model of endothelial dysfunction via ablation of p47phox expression. Molecular Nutrition and Food Research. 60(4): 787-797, which has been published in final form at https://doi.org/10.1002/mnfr.201500751. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
Peer-Reviewed
Yes
Open Access status
openAccess
Accepted for publication
05/01/2016
Institution
Department
Awarded
Embargo end date
Additional title
Abstract
Quercetin is reported to reduce blood pressure in hypertensive but not normotensive humans, but the role of endothelial redox signaling in this phenomenon has not been assessed. This study investigated the effects of physiologically obtainable quercetin concentrations in a human primary cell model of endothelial dysfunction in order to elucidate the mechanism of action of its antihypertensive effects. Angiotensin II (100 nM, 8 h) induced dysfunction, characterized by suppressed nitric oxide availability (85 ± 4% p<0.05) and increased superoxide production (136 ± 5 %, p<0.001). These effects were ablated by an NADPH oxidase inhibitor. Quercetin (3 μM, 8 h) prevented angiotensin II induced changes in nitric oxide and superoxide levels, but no effect upon nitric oxide or superoxide in control cells. The NADPH oxidase subunit p47(phox) was increased at the mRNA and protein levels in angiotensin II-treated cells (130 ± 14% of control, p<0.05), which was ablated by quercetin co-treatment. Protein kinase C activity was increased after angiotensin II treatment (136 ± 51%), however this was unaffected by quercetin co-treatment. Physiologically obtainable quercetin concentrations are capable of ameliorating angiotensin II-induced endothelial nitric oxide and superoxide imbalance via protein kinase C-independent restoration of p47(phox) gene and protein expression.
Version
Accepted manuscript
Citation
Jones HS, Gordon A, Magwenzi SG et al (2016) The dietary flavonol quercetin ameliorates angiotensin II-induced redox signaling imbalance in a human unbilical vein endothelial cell model of endothelial dysfunction via ablation of p47phox expression. Molecular Nutrition and Food Research. 60(4): 787-797.
Link to publisher’s version
Link to published version
Type
Article
Qualification name
Notes