Loading...
A State-of-the-Art Artificial intelligence model for Infectious Disease Outbreak Prediction. Infectious disease outbreak have been predicted in England and Wales using Artificial Intelligence, Machine learning, and Fast Fourier Transform for COVID-19.
Fayad, Moataz B.M.
Fayad, Moataz B.M.
Publication Date
2023
End of Embargo
Supervisor
Rights

The University of Bradford theses are licenced under a Creative Commons Licence.
Peer-Reviewed
Open Access status
Accepted for publication
Institution
University of Bradford
Department
Department of Biomedical and Electronics Engineering. Faculty of Engineering and Informatics
Awarded
2023
Embargo end date
Collections
Additional title
Abstract
The pandemic produced by the COVID-19 virus has resulted in an estimated 6.4 million deaths worldwide and a rise in unemployment rates, notably in the UK. Healthcare monitoring systems encounter several obstacles when regulating and anticipating epidemics. The study aims to present the AF-HIDOP model, an artificial neural network Fast Fourier Transform hybrid technique, for the early identification and prediction of the risk of Covid-19 spreading within a specific time and region. The model consists of the following five stages: 1) Data collection and preprocessing from reliable sources; 2) Optimal machine learning algorithm selection, with the Random Forest tree (RF) classifier achieving 94.4% accuracy; 3) Dimensionality reduction utilising principal components analysis (PCA) to optimise the impact of the data volume; 4) Predicting case numbers utilising an artificial neural network model, with 52% accuracy; 5) Enhancing accuracy by incorporating Fast Fourier Transform (FFT) feature extraction and ANN, resulting in 91% accuracy for multi-level spread risk classification. The AF-HIDOP model provides prediction accuracy ranging from moderate to high, addressing issues in healthcare-based datasets and costs of computing, and may have potential uses in monitoring and managing infectious disease epidemics.
Version
Citation
Link to publisher’s version
Link to published version
Link to Version of Record
Type
Thesis
Qualification name
PhD