Loading...
Flexural behavior of ECC–concrete hybrid composite beams reinforced with FRP and steel bars
Ge, W-J. ; ; Yu, J. ; Gao, P. ; Cao, D-F. ; Cai, C. ; Ji, X.
Ge, W-J.
Yu, J.
Gao, P.
Cao, D-F.
Cai, C.
Ji, X.
Publication Date
2019-02
End of Embargo
Supervisor
Rights
©2018 American Society of Civil Engineers. This material may be downloaded for personal use only. Any other use requires prior permission of the American Society of Civil Engineers. This material may be found at https://doi.org/10.1061/(ASCE)CC.1943-5614.0000910.
Peer-Reviewed
Yes
Open Access status
Accepted for publication
2018-07-12
Institution
Department
Awarded
Embargo end date
Additional title
Abstract
This paper aims to investigate the flexural behavior of engineered cementitious composite (ECC)-concrete hybrid composite beams reinforced with fiber reinforced polymer (FRP) bars and steel bars. Thirty two hybrid reinforced composite beams having various ECC height replacement ratio and combinations of FRP and steel reinforcements were experimentally tested to failure in flexure. Test results showed that cracking, yield and ultimate moments as well as the stiffness of hybrid and ECC beams are improved compared with traditional concrete beams having the same reinforcement, owing to the excellent tensile properties of ECC materials. The average crack spacing and width decrease with the increase of ECC height replacement ratio. The ductility of hybrid reinforced composite beams is higher than that of traditional reinforced concrete beams while their practical reinforcement ratios are similar. Reinforced ECC beams show considerable energy dissipation capacity owing to ECC’s excellent deformation ability. Considering the constitutive models of materials, compatibility and equilibrium conditions, formulas for the prediction of cracking, yield and ultimate moments as well as deflections of hybrid reinforced ECC-concrete composite beams are developed. The proposed formulas are in good agreement with the experimental results. A comprehensive parametric analysis is, then, conducted to illustrate the effect of reinforcement, ECC and concrete properties on the moment capacity, curvature, ductility and energy dissipation of composite beams.
Version
Accepted Manuscript
Citation
Ge W-J, Ashour AF, Yu J et al (2019) Flexural behavior of ECC–concrete hybrid composite beams reinforced with FRP and steel bars. Journal of Composites for Construction. 23(1): 04018069.
Link to publisher’s version
Link to published version
Link to Version of Record
Type
Article