Publication

Neural network based modelling and control of batch reactor.

Aziz, Norashid
Hussain, M.A.
Publication Date
2006
End of Embargo
Supervisor
Rights
Peer-Reviewed
Yes
Open Access status
closedAccess
Accepted for publication
Institution
Department
Awarded
Embargo end date
Additional title
Abstract
The use of neural networks (NNs) in all aspects of process engineering activities, such as modelling, design, optimization and control has considerably increased in recent years (Mujtaba and Hussain, 2001). In this work, three different types of nonlinear control strategies are developed and implemented in batch reactors using NN techniques. These are generic model control (GMC), direct inverse model control (DIC) and internal model control (IMC) strategies. Within the control strategies, NNs have been used as dynamic estimator, dynamic model (forward model) and control (inverse model). An exothermic complex reaction scheme in a batch reactor is considered to explain all these control strategies and their robustness. A dynamic optimization problem with a simple model is solved a priori to obtain optimal operation policy in terms of the reactor temperature with an objective to maximize the desired product in a given batch time. The resulting optimal temperature policy is used as set-point in the control study. All types of controllers performed well in tracking the optimal temperature profile and achieving target conversion to the desired product. However, the NNs used in DIC and IMC controllers need training beyond the nominal operating condition to cope with uncertainties better.
Version
No full-text in the repository
Citation
Mujtaba, I.M., Aziz, N. and Hussain, M.A. (2006). Neural network based modelling and control of batch reactor. Chemical Engineering Research and Design. Vol. 84, No. 8, pp. 635-644.
Link to publisher’s version
Link to published version
Link to Version of Record
Type
Article
Qualification name
Notes