Loading...
Thumbnail Image
Publication

The perceived timing of events across different sensory modalities. A psychophysical investigation of multisensory time perception in humans.

Hanson, James Vincent Michael
Publication Date
2010-05-07T12:05:26Z
End of Embargo
Rights
Creative Commons License
The University of Bradford theses are licenced under a Creative Commons Licence.
Peer-Reviewed
Open Access status
Accepted for publication
Institution
University of Bradford
Department
School of Optometry and Vision Science
Awarded
2009
Embargo end date
Collections
Additional title
Abstract
The experiments reported within this thesis use psychophysical techniques to examine the factors which determine perceived multisensory timing in humans. Chapters 1 and 2 describe anatomical and psychophysical features of temporal processing, respectively, whilst Chapter 3 introduces the reader to psychophysical methods. Chapter 4 examines the relationship between two measures of sensory latency, reaction time (RT) and crossmodal temporal order judgment (TOJ). Despite task and attentional manipulations the two measures do not correlate, suggesting that they measure some fundamentally different aspect(s) of temporal perception. Chapter 5 examines the effects of adaptation to asynchronous stimulus pairs on perceived audiovisual (AV), audiotactile (AT) and visuotactile (VT) temporal order. Significant temporal shifts are recorded in all three conditions. Evidence is also presented showing that crossmodal TOJs are intransitive. Chapter 6 shows that concurrent adaptation to two sets of asynchronous AV stimulus pairs causes perceived AV temporal order to recalibrate at two locations simultaneously, and that AV asynchrony adaptation effects are significantly affected by observers¿ attention during adaptation. Finally, Chapter 7 shows that when observers are accustomed to a physical delay between motor actions and sensory events, an event presented at a reduced delay appears to precede the causative motor action. The data are well-described by a simple model based on a strong prior assumption of physical synchrony between motor actions and their sensory consequences.
Version
Citation
Link to publisher’s version
Link to published version
Link to Version of Record
Type
Thesis
Qualification name
PhD
Notes