Loading...
Thumbnail Image
Publication

An analytic representation of weak mutually unbiased bases

Olupitan, Tominiyi E.
Publication Date
2016
End of Embargo
Rights
Creative Commons License
The University of Bradford theses are licenced under a Creative Commons Licence.
Peer-Reviewed
Open Access status
Accepted for publication
Institution
University of Bradford
Department
Faculty of Engineering and Informatics
Awarded
2016
Embargo end date
Collections
Abstract
Quantum systems in the d-dimensional Hilbert space are considered. The mutually unbiased bases is a deep problem in this area. The problem of finding all mutually unbiased bases for higher (non-prime) dimension is still open. We derive an alternate approach to mutually unbiased bases by studying a weaker concept which we call weak mutually unbiased bases. We then compare three rather different structures. The first is weak mutually unbiased bases, for which the absolute value of the overlap of any two vectors in two different bases is 1/√k (where k∣d) or 0. The second is maximal lines through the origin in the Z(d) × Z(d) phase space. The third is an analytic representation in the complex plane based on Theta functions, and their zeros. The analytic representation of the weak mutually unbiased bases is defined with the zeros examined. It is shown that there is a correspondence (triality) that links strongly these three apparently different structures. We give an explicit breakdown of this triality.
Version
Citation
Link to publisher’s version
Link to published version
Link to Version of Record
Type
Thesis
Qualification name
PhD
Notes