Loading...
Automated system design for the efficient processing of solar satellite images. Developing novel techniques and software platform for the robust feature detection and the creation of 3D anaglyphs and super-resolution images for solar satellite images.
Zraqou, Jamal Sami
Zraqou, Jamal Sami
Publication Date
2012-05-24
End of Embargo
Supervisor
Rights

The University of Bradford theses are licenced under a Creative Commons Licence.
Peer-Reviewed
Open Access status
Accepted for publication
Institution
University of Bradford
Department
School of Computing, Informatics & Media
Awarded
2011
Embargo end date
Collections
Additional title
Abstract
The Sun is of fundamental importance to life on earth and is studied by scientists from many disciplines. It exhibits phenomena on a wide range of observable scales, timescales and wavelengths and due to technological developments there is a continuing increase in the rate at which solar data is becoming available for study which presents both opportunities and challenges. Two satellites recently launched to observe the sun are STEREO (Solar TErrestrial RElations Observatory), providing simultaneous views of the SUN from two different viewpoints and SDO (Solar Dynamics Observatory) which aims to study the solar atmosphere on small scales and times and in many wavelengths. The STEREO and SDO missions are providing huge volumes of data at rates of about 15 GB per day (initially it was 30 GB per day) and 1.5 terabytes per day respectively. Accessing these huge data volumes efficiently at both high spatial and high time resolutions is important to support scientific discovery but requires increasingly efficient tools to browse, locate and process specific data sets.
This thesis investigates the development of new technologies for processing information contained in multiple and overlapping images of the same scene to produce images of improved quality. This area in general is titled Super Resolution (SR), and offers a technique for reducing artefacts and increasing the spatial resolution. Another challenge is to generate 3D images such as Anaglyphs from uncalibrated pairs of SR images. An automated method to generate SR images is presented here. The SR technique consists of three stages: image registration, interpolation and filtration. Then a method to produce enhanced, near real-time, 3D solar images from uncalibrated pairs of images is introduced.
Image registration is an essential enabling step in SR and Anaglyph processing. An accurate point-to-point mapping between views is estimated, with multiple images registered using only information contained within the images themselves. The performances of the proposed methods are evaluated using benchmark evaluation techniques. A software application called the SOLARSTUDIO has been developed to integrate and run all the methods introduced in this thesis. SOLARSTUDIO offers a number of useful image processing tools associated with activities highly focused on solar images including: Active Region (AR) segmentation, anaglyph creation, solar limb extraction, solar events tracking and video creation.
Version
Citation
Link to publisher’s version
Link to published version
Link to Version of Record
Type
Thesis
Qualification name
PhD