Loading...
Thumbnail Image
Publication

Fully automated computer system for diagnosis of corneal diseases. Development of image processing technologies for the diagnosis of Acanthamoeba and Fusarium diseases in confocal microscopy images

Alzubaidi, Rania S.M.
Publication Date
2017
End of Embargo
Rights
Creative Commons License
The University of Bradford theses are licenced under a Creative Commons Licence.
Peer-Reviewed
Open Access status
Accepted for publication
Institution
University of Bradford
Department
Faculty of Engineering and Informatics
Awarded
2017
Embargo end date
Collections
Additional title
Abstract
Confocal microscopy demonstrated its value in the diagnosis of Acanthamoeba and fungal keratitis which considered sight-threatening corneal diseases. However, it can be difficult to find and train confocal microscopy graders to accurately detect Acanthamoeba cysts and fungal filaments in the images. Use of an automated system could overcome this problem and help to start the correct treatment more quickly. Also, response to treatment can be difficult to assess in infectious keratitis using clinical examination alone, but there is evidence that the morphology of filaments and cysts may change over time with the use of correct treatment. An automated system to analyse confocal microscopy images for such changes would also assist clinicians in determining whether the ulcer is improving, or whether a change of treatment is needed. This research proposes a fully automated novel system with GUI to detect cysts and hyphae (filaments) and measure useful quantitative parameters for them through many stages; Image enhancement, image segmentation, quantitative analysis for detected cysts and hyphae, and registration and tracking of ordered sequence of images. The performance of the proposed segmentation procedure is evaluated by comparing between the manual and the automated traced images of the dataset that was provided by the Manchester Royal Eye Hospital. The positive predictive values rate of cysts for Acanthamoeba images was 76%. For detected hyphae in Fusarium images, many standard measurements were computed. The accuracy of their values was quantified by calculating the percent error rate for each measurement and which ranged from 23% to 49%.
Version
Citation
Link to publisher’s version
Link to published version
Link to Version of Record
Type
Thesis
Qualification name
PhD
Notes

Version History

Now showing 1 - 2 of 2
VersionDateSummary
2*
2025-04-08 08:35:11
Edited author entries
2019-06-26 10:58:58
* Selected version